63 research outputs found

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1≤Nc≤N1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    Performance Analysis of Hybrid Relay Selection in Cooperative Wireless Systems

    Full text link
    The hybrid relay selection (HRS) scheme, which adaptively chooses amplify-and-forward (AF) and decode-and-forward (DF) protocols, is very effective to achieve robust performance in wireless networks. This paper analyzes the frame error rate (FER) of the HRS scheme in general cooperative wireless networks without and with utilizing error control coding at the source node. We first develop an improved signal-to-noise ratio (SNR) threshold-based FER approximation model. Then, we derive an analytical average FER expression as well as an asymptotic expression at high SNR for the HRS scheme and generalize to other relaying schemes. Simulation results are in excellent agreement with the theoretical analysis, which validates the derived FER expressions.Comment: IEEE Transactions on Communications, 201

    Using EVT for Geological Anomaly Design and Its Application in Identifying Anomalies in Mining Areas

    Get PDF
    A geological anomaly is the basis of mineral deposit prediction. Through the study of the knowledge and characteristics of geological anomalies, the category of extreme value theory (EVT) to which a geological anomaly belongs can be determined. Associating the principle of the EVT and ensuring the methods of the shape parameter and scale parameter for the generalized Pareto distribution (GPD), the methods to select the threshold of the GPD can be studied. This paper designs a new algorithm called the EVT model of geological anomaly. These study data on Cu and Au originate from 26 exploration lines of the Jiguanzui Cu-Au mining area in Hubei, China. The proposed EVT model of the geological anomaly is applied to identify anomalies in the Jiguanzui Cu-Au mining area. The results show that the model can effectively identify the geological anomaly region of Cu and Au. The anomaly region of Cu and Au is consistent with the range of ore bodies of actual engineering exploration. Therefore, the EVT model of the geological anomaly can effectively identify anomalies, and it has a high indicating function with respect to ore prospecting

    Identifying immune cell infiltration and effective diagnostic biomarkers in Crohn’s disease by bioinformatics analysis

    Get PDF
    BackgroundCrohn’s disease (CD) has an increasing incidence and prevalence worldwide. It is currently believed that both the onset and progression of the disease are closely related to immune system imbalance and the infiltration of immune cells. The aim of this study was to investigate the molecular immune mechanisms associated with CD and its fibrosis through bioinformatics analysis.MethodsThree datasets from the Gene Expression Omnibus data base (GEO) were downloaded for data analysis and validation. Single sample gene enrichment analysis (ssGSEA) was used to evaluate the infiltration of immune cells in CD samples. Immune cell types with significant differences were identified by Wilcoxon test and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Differentially expressed genes (DEGs) were screened and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional correlation analysis, as well as protein-protein interaction (PPI) network analysis. The cytoHubba program and the GSE75214 dataset were used to screen for hub genes and plot Receiver operating characteristic (ROC)curves to screen for possible biomarkers of CD based on diagnostic efficacy. The hub genes of CD were correlated with five significantly different immune cells. In addition, validation was performed by real time quantitative PCR (RT-qPCR) experiments in colonic tissue of CD intestinal fibrosis rats to further identify hub genes that are more related to CD intestinal fibrosis.ResultsThe DEGs were analyzed separately by 10 algorithms and narrowed down to 9 DEGs after taking the intersection. 4 hub genes were further screened by the GSE75214 validation set, namely COL1A1, CXCL10, MMP2 and FGF2. COL1A1 has the highest specificity and sensitivity for the diagnosis of CD and is considered to have the potential to diagnose CD. Five immune cells with significant differences were screened between CD and health controls (HC). Through the correlation analysis between five kinds of immune cells and four biomarkers, it was found that CXCL10 was positively correlated with activated dendritic cells, effector memory CD8+ T cells. MMP2 was positively correlated with activated dendritic cells, gamma delta T cells (γδ T) and mast cells. MMP2 and COL1A1 were significantly increased in colon tissue of CD fibrosis rats.ConclusionMMP2, COL1A1, CXCL10 and FGF2 can be used as hub genes for CD. Among them, COL1A1 can be used as a biomarker for the diagnosis of CD. MMP2 and CXCL10 may be involved in the development and progression of CD by regulating activated dendritic cell, effector memory CD8+ T cell, γδ T cell and mast cell. In addition, MMP2 and COL1A1 may be more closely related to CD intestinal fibrosis

    Optimized electroacupuncture treatment for female stress urinary incontinence: study protocol for a multi-center randomized controlled trial

    Get PDF
    BackgroundStress urinary incontinence (SUI) is a common condition that can severely affect women’s life quality. Electroacupuncture (EA) has been proved to be an optional treatment for SUI, but the tolerance of EA becomes a factor affecting efficiency, which should not be ignored and needs to be solved urgently. The purpose of this study is to find out whether the use of alternating acupoints combination can solve this problem or not and provide an optimization of EA treatment for female SUI.MethodsThis multi-center randomized controlled trial will enroll 360 patients with SUI. They will be randomly assigned to one of the three groups—sacral acupoints group (sacral group), abdominal acupoints group (abdominal group), or alternating acupoints group (alternating group)—at a 1:1:1 ratio. The patients will receive 18 sessions of EA treatment and will be followed up for 48 weeks after the treatment. The primary outcome measure of the study is the change of urine leakage at week 6. The secondary outcomes include the incontinence episode frequency (IEF), International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF), severity of SUI, patient self-evaluation of therapeutic effects, weekly usage of urine pads, ultrasonography of pelvic floor, specialty therapies for SUI, evaluation of discomfort during EA treatment, patient acceptability evaluation and adverse events related to intervention.DiscussionThis trial is specifically designed to offer an optimized EA treatment for female SUI, aiming to enhance their quality of life.Clinical trial registration: ClinicalTrials.gov, identifier ID:NCT05635669

    Optimum power allocation for hybrid relay selection schemes

    No full text
    In this paper, we consider a dual-hop multiple-relay network with hybrid relay selection (HRS). The analytical symbol error rate (SER) is derived, and the optimum power allocation (OPA) methods are presented based on the closed-form and simplified SER expressions. The analytical results are verified by computer simulations. Simulation results also show that the SER performance of the HRS scheme is effectively improved by using power allocation, especially as the number of relays increases.Computer Science, Hardware & ArchitectureEngineering, Electrical & ElectronicTelecommunicationsEICPCI-S(ISTP)

    Optimal Spatial-Domain Design for Spatial Modulation Capacity Maximization

    No full text
    As a promising technique in multi-antenna systems, spatial modulation (SM) introduces the spatial domain into its constellation by mapping more information with antenna selection, in addition to the signal domain. To further improve the capacity performance of SM, an iterative algorithm for the spatial-domain design is proposed in this letter, where the optimal probability of activating each transmit antenna is obtained to maximize the instantaneous capacity of SM. By comparing the metrics of outage and ergodic capacity with the conventional SM, illustrative numerical results not only demonstrate the throughput achieved in the proposed scheme, but also substantiate the domination of the proposed scheme over the conventional SM

    Insights into Circulating Tumor Cell Clusters: A Barometer for Treatment Effects and Prognosis for Prostate Cancer Patients

    No full text
    Prostate cancer (PCa) exhibits high cellular heterogeneity across patients. Therefore, there is an urgent need for more real-time and accurate detection methods, in both prognosis and treatment in clinical settings. Circulating tumor cell (CTC) clusters, a population of tumor cells and non-malignant cells in the blood of patients with tumors, are a promising non-invasive tool for screening PCa progression and identifying potential benefit groups. CTC clusters are associated with tumor metastasis and possess stem-like characteristics, which are likely attributable to epithelial–mesenchymal transition (EMT). Additionally, these biological properties of CTC clusters, particularly androgen receptor V7, have indicated the potential to reflect curative effects, guide treatment modalities, and predict prognosis in PCa patients. Here, we discuss the role of CTC clusters in the mechanisms underlying PCa metastasis and clinical applications, with the aim of informing more appropriate clinical decisions, and ultimately, improving the overall survival of PCa patients

    Application of a Maximum Entropy Model for Mineral Prospectivity Maps

    No full text
    The effective integration of geochemical data with multisource geoscience data is a necessary condition for mapping mineral prospects. In the present study, based on the maximum entropy principle, a maximum entropy model (MaxEnt model) was established to predict the potential distribution of copper deposits by integrating 43 ore-controlling factors from geological, geochemical and geophysical data. The MaxEnt model was used to screen the ore-controlling factors, and eight ore-controlling factors (i.e., stratigraphic combination entropy, structural iso-density, Cu, Hg, Li, La, U, Na2O) were selected to establish the MaxEnt model to determine the highest potential zone of copper deposits. The spatial correlation between each ore-controlling factor and the occurrence of a copper mine was studied using a response curve, and the relative importance of each ore-controlling factor was determined by jackknife analysis in the MaxEnt model. The results show that the occurrence of copper ore is positively correlated with the content of Cu, Hg, La, structural iso-density and stratigraphic combination entropy, and negatively correlated with the content of Na2O, Li and U. The model’s performance was evaluated by the area under the receiver operating characteristic curve (AUC), Cohen’s maximized Kappa and true skill statistic (TSS) (training AUC = 0.84, test AUC = 0.8, maximum Kappa = 0.5 and maximum TSS = 0.6). The results indicate that the model can effectively integrate multi-source geospatial data to map mineral prospectivity

    Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal

    No full text
    Dually crosslinked graphene oxide reinforced alginate/polyvinyl alcohol (PVA) double network (DN) hydrogels were prepared via a facile freeze/thaw method followed by soaking in a Ca2+ solution. The morphology and structure of the hydrogels were systematically examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The effects of pH, dosage of hydrogel, adsorption time, and temperature on the adsorptive property of DN hydrogels towards methylene blue (MB) were also studied. Results indicated that the hydrogels exhibited typical 3D porous structures and had an efficient adsorption effect towards MB due to strong interactions between DN hydrogels and MB molecules. The adsorption isotherm was found to coincide with the Langmuir model with a monolayer adsorption. The highest adsorption capacity of DN hydrogels for MB was examined as 480.76 mg·g−1
    • …
    corecore