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A geological anomaly is the basis of mineral deposit prediction. Through the study of the knowledge and characteristics of geological
anomalies, the category of extreme value theory (EVT) to which a geological anomaly belongs can be determined. Associating the
principle of the EVT and ensuring the methods of the shape parameter and scale parameter for the generalized Pareto distribution
(GPD), the methods to select the threshold of the GPD can be studied. This paper designs a new algorithm called the EVT model
of geological anomaly. These study data on Cu and Au originate from 26 exploration lines of the Jiguanzui Cu-Au mining area in
Hubei, China. The proposed EVT model of the geological anomaly is applied to identify anomalies in the Jiguanzui Cu-Au mining
area. The results show that the model can effectively identify the geological anomaly region of Cu and Au. The anomaly region of
Cu and Au is consistent with the range of ore bodies of actual engineering exploration. Therefore, the EVT model of the geological

anomaly can effectively identify anomalies, and it has a high indicating function with respect to ore prospecting.

1. Introduction

In mineral deposit prediction, searching for mineral deposits
requires identification of a geological anomaly indicating that
the economic value is high (“as discussed by Darehshiri et al.
[1]”). A geological anomaly is a geological body or complex
of bodies with obvious different compositions, structures,
or orders of genesis as compared with the surrounding
circumstances (“as discussed by Lu and Zhao [2]”). With
the evolution of the earth, the nature, source, and intensity
of force will not be the same across different times and
space. In addition, the distribution of material of the earth
is not uniform in time and space, which results in different
events and responses, such as the tension and compression
of layers, deposition and erosion of material, subsidence
and uplift of the crust, simple and complex structures, and
intrusion and ejection of magma; these differences form the
geological anomaly (“as discussed by Pengda et al. [3]”). If a
numerical value or numerical interval is used as a threshold
to represent the background field, the field that is above or
below the threshold constitutes a geological anomaly (“as

discussed by Cheng [4]”). The character of the geological
anomaly and the size and type of mineral resources are
determined by the geological environment, geological age,
rock type, and structural background of the formation of
the geological anomaly. With the evolution of geology, the
geological anomaly has an evolution sequence in the time
and space. With respect to time, evolution has the stage; with
respect to space, evolution has inheritance and superposition
(“as discussed by Freedman and Parsons [5]”).

Not all geological anomalies can form deposits, but the
constitution of a geological anomaly is a prerequisite for
the formation of deposits (“as discussed by Shen et al.
[6]”). Determining which geological anomaly can result in
a mineral deposit can allow effective identification of the
deposit. Based on the time required for ore formation, a
geological anomaly can be classified into a front ore-forming
anomaly, an ore-forming anomaly, and a tail ore-forming
anomaly (“as discussed by Zhao et al. [7]”). Different factors
and combinations of ore-forming geologies have certain
special properties related to ore formation. However, various
minerals with different genetic, morphological, mineral, and



industrial types are needed to select certain geological factors
and combinations. Therefore, it is necessary to find the target
anomaly in all of the possible ore-forming geological anoma-
lies; the area of the target anomaly is known as the feasible
location for prospecting. According to additional informa-
tion on ore formation, such as the remote sensing anomaly,
geophysical anomaly, and geochemical anomaly, we can find
the location of the required ore deposit; these areas are known
as the favorable areas for prospecting. With more information
on the geological anomaly, the area of the prospecting target
will be gradually reduced, making it easy to locate the deposit.
Therefore, the geological anomaly is the basis of mineral
deposit prediction; it is effective in locating deposits by
precisely identifying the geological anomaly. Therefore, it is
important to identify more reasonable methods to locate the
geological anomaly. To meet this challenge, various methods
have been proposed and successfully applied with respect
to the geological anomaly, such as the Three-Component
Mineral Prediction theory (“as discussed by Zhao et al. [8]7),
the quantitative prediction theory of geological anomaly (“as
discussed by Pengda et al. [3]”), and singularity theories and
methods for mineral deposit prediction (“as discussed by
Cheng and Zhao [9]”). However, each method pertaining
to the geological anomaly needs to meet the conditions of
the algorithms when they identify the geological anomaly.
In fact, not every algorithm satisfies the entire geological
environment. Consequently, more algorithms related to the
characteristics of the geological anomaly and those based
on the environment are needed, which match the extraction
criteria of the geological anomaly.

At the International Statistics Congress held in Seoul,
Republic of Korea (“as discussed by Chen et al. [10]”), Pengda
Zhao described the geological anomaly as an extreme value
based on a mathematical foundation. For the geological back-
ground, he thought that an abnormal value was the geological
anomaly, which directly infers that knowledge of the mathe-
matical foundation of the geological anomaly is of extreme
value. The extreme value analysis pertains to research on the
random character in the process of quantification at a very
large or small level and an estimate of the probability of an
extreme event at the existing observational level, while the
observation data of the geological anomaly are located in the
tail end of the distribution. Therefore, the geological anomaly
belongs to the EVT category. The extreme value theorem is
a branch of statistics that studies the limiting distribution of
the minimum and maximum value and evaluates the risk
of extreme events (“as discussed by Allen et al. [11]”). In
recent years, the EVT has been widely used in the fields of
finance, insurance, floods, earthquakes, rainfall analysis, and
so on (“as discussed by Chen and Lv [12]” and “as discussed
elsewhere [12-14]”). Since the geological anomaly belongs to
the EVT category, the EVT has been widely used in many
fields, so we can learn from the experience of these types
of applications and design the extreme value model of the
geological anomaly that can effectively identify the geological
anomaly. Does the EVT model of the geological anomaly
really identify anomalies? This study was performed to verify
the use of the model to identify anomalies in the Jiguanzui
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Cu-Au mining area. The results show that the model can
effectively identify the geological anomaly region.

The rest of this paper is organized as follows. Section 2
studies the EVT, the method of selecting the threshold EVT is
studied, and some parameters of the EVT are also discussed.
Section 3 designs the EVT model of the geological anomaly
and provides a new method to increase the accuracy with
which the threshold can be selected. The feasibility of using
the EVT model to identify the anomaly is discussed. Section 4
will demonstrate the application of the EVT model of the geo-
logical anomaly. Some conclusions are presented in Section 5.

2. The Study of the EVT

2.1. The Knowledge Related to the EVT. In the sample data, if
the parent distribution or the sample size is not fully known,
the parent distribution can be obtained from the asymptotic
distribution of the extreme value of the sample. While the
sample data are large, the largest or smallest value from a
sample has a degradation problem. However, the extremal
type theorem can effectively solve this problem (“as discussed
by Vanem [15]”). The extremal type theorem is presented as
follows.

If x,,x,,...,x, is a sequence of independent random
variables with a common distribution, parent distribution
F(x) is unknown. M, is the largest value of the sample
interval, and H(x) is a nondegenerate distribution function.
If there exists a sequence of constants {a,} > 0 and {b,} € R,

Pr(M"—_b"Sx)—>H(x). )

a

H(x) indicates a generalized extreme value distribution.
Here, a, is a scaling constant and b, is a location constant.
Then, this limiting distribution H(x) after standardization
(M,, — b,)/a, must be one of the three following types:

0, x<b

H(x) = <x—b>_"‘}
exp - , x>b

a

a >0, (FRECHET)

exp«—[—(x;b>_an», x<b 2

1, x>b

« <0, (WEIBULL)

wo-enf-enl-(52)])

x € R, (GUMBEL).

Here, o is a shape parameter, b is a location parameter, and a
is a scale parameter.

2.2. The GPD Model. In the EVT, the block maxima method
(BMM) is a traditional model (“as discussed by Rivas et al.
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[16]”). The BMM divides the sample interval into several
nonoverlapping cells in accordance with the time, the length,
and so on. Then, there is an extreme sequence that is
formed by selecting all the maximum values of each small
interval; from the extreme sequence, the parent distribution
can be obtained by distribution fitting of the extremal type
theorem. However, the BMM model has a problem that some
maximum values of intervals are greater than those of the
other intervals; thus, the validity of the BMM model is not
satisfactory. The defects can be solved by generalized Pareto
distribution (GPD) (“as discussed by Ashkar and El Adlouni
[17]7). The GPD is a fitting of the observed data, which is
greater than a certain threshold.

Here, x,, x,, ..., x,, is a sequence of independent random
variables with a common distribution, and y is a sufficiently
high threshold. If there is positive number f3, the excess
distribution (x; — y, i = 1,2,...,n) can be expressed as

N\
1—<1+€x ”) , &#0

Gip(x) = B (3)
1-— e—(x—y)/ﬁ) £=0,

where & is a shape parameter and f is a scale parameter. If
£>0,x>pand& < 0, u < x < —fB/& + p. The sequence
(x;, 1 = 1,2,...,n) obeys the GPD. The general formula of
the GPD is given by

B é -1/
G () = 1 <1+ﬁx) , £#0

1-e P, E=0.

Here, if B = 1, the expression of the GPD is referred to as
the standard form. If & = —0.5, 0.5, and 0, then the image of
the standard distribution function and density distribution
function of the GPD is as presented in Figure 1. From

(4)

()

FIGURE 1: The standard GPD: (a) is the distribution function of the GPD and (b) is the density function of the GPD.

Figure 1(a), it is seen that the tail of the GPD thickens as the
shape parameter increases. Figure 1(b) shows that the density
function of the GPD decreases monotonically.

The GPD requires estimates of the parameters and thresh-
old. The shape parameter £ and scale parameter 3 of the GPD
can be estimated by the maximum likelihood function (“as
discussed by Castillo and Serra [18]”). Taking the derivative
of (4), we can obtain the density function of the GPD:

1 x\ !

Taking natural logarithms of both sides of (5), we obtain
the log likelihood function:

L(&B:x)=-nLnf - <% + 1)§Ln<1 + %xi>. (6)

Taking the partial derivative of £ and f3 of (6), respectively, the
likelihood equation is as follows:

7)

Thus, the maximum likelihood estimate value 2 of the
shape parameter £ and the maximum likelihood estimate
value B of the scale parameter f3 can be obtained from (7).
In addition, the shape parameter and scale parameter of the
GPD can be estimated by the moment method; the estimation
results obtained by the moment method are superior to those



obtained using the likelihood function (“as discussed by
Ergiin and Jun [19]”). The moment method is given by

_ [r-@ey]
d 2 ’ (8)
B

#(1-2),

where t; = x; — pu > 0, t is the mean value of ¢;, and § is
the standard deviation of t;. In the GPD model, the threshold
selection methods mainly concern the mean excess function
(MEF) (“as discussed by Gencay and Selcuk [20]”) and Hill
plotting (“as discussed by J. H. T. Kim and J. Kim [21]”). If
random variable X obeys the GPD, the MEF E(u) is given by

(/3+Hf)' ©)
(1-¢%)

For the actual sample data, E(u) can be calculated by the
following:

E(W=EX-plX>u)=

Z?=1 (x; - P‘)+
N, (10)

n

E(u) =

where # is the total number of sample data and N, is the total
number of sample data that exceed threshold p. If x; > p, (x;—
W' =x;—porx; <p, (x;—u)" = 0. Then, we can plot scatter
diagram (g, E(p)). In the scatter diagram, there is sufficiently
high threshold y; when x > p, E(u) is an approximate linear
function.

3. Design the EVT Model of
the Geological Anomaly

For the actual observational data X = {x;,x,,...,x,} of
the geological anomaly, the tail distribution of the geological
observational data is called the geological anomaly. Therefore,
if the data are higher than sufficiently high threshold y in
the sample data, we can model these data using the GPD.
The parameters of the GPD can be estimated by the moment
method or the likelihood function. Threshold y can also be
calculated using the MEF or Hill plotting. Thus, the designed
EVT model of the geological anomaly is as follows.

Step 1 (conditional test). Before using the EVT model of
the geological anomaly, the stationary and posttail of the
sample data need to be tested. The common method of the
conditional test is as follows: probability plot and quantile-
quantile (Q-Q) plot (“as discussed by Feng et al. [22]7),
augmented Dickey-Fuller (ADF) test (“as discussed by Lee
and Chang [23]”), and so on.

Step 2 (estimate the parameters of the model). For the sample
data, use the moment method or likelihood function to
estimate shape parameter £ and scale parameter f3 of the GPD.

Step 3 (determine the threshold). Select different thresholds
p from the sample data. Then, we can calculate the MEF of
the sample data through scatter diagram (u, E(¢)); there is
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l

Conditional test. The common method of conditional
test is as follows: P-P plot, Q-Q plot, and ADF
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FIGURE 2: The chart of the algorithm.

sufficiently high threshold y, when x > p, and E(y) is an
approximate linear function. Here, the value y is called the
threshold of the geological anomaly.

Step 4 (determine the distribution of the excess threshold).
After the threshold and parameters are determined, we insert
the threshold and parameters into the GPD to obtain the
distribution of the excess threshold; this distribution is called
the abnormal probability distribution.

Step 5. After the distribution of excess threshold is deter-
mined, a diagnostic test can determine whether the threshold
selection is rational. The diagnostic test of the model mainly
tests the consistency between the theoretical distribution and
the actual distribution, especially the fitting degree of the
actual data and the model distribution. The methods we
usually use are the Q-Q plot and probability plot. If the test
effect is not satisfactory, repeat Step 3 and determine the new
reasonable threshold. The chart of the EVT model of the
geological anomaly is shown in Figure 2.

In this study, the determination of threshold y in the
EVT model is critical. If the selection of the threshold value
is higher, the number of samples that exceed the threshold
value is lower, and the parameters of the GPD are very
sensitive to the high values of the observational data, which
will cause errors in the parameter estimation. Conversely,
the selection of a threshold value that is low will increase
the number of observations, increasing the accuracy of the
estimation of the parameters, but the excess data x; — y do
not obey the GPD distribution. At present, there is no clear
method to select the accuracy threshold. The MEF can be
used to estimate the threshold with some defects, in which
the selection of the threshold is usually an interval value and
notan accurate constant. Therefore, this paper provides a new
method to increase the accuracy with which the threshold can
be selected. In the GPD, when the initial threshold value g,
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TABLE 1: The basic statistics of Cu and Au.

Elements Mean Minimum Maximum Std. dev CV Skewness Kurtosis

Cu 641.44 53.26 17202.77 727.65 1.13 7.38 106.96

Au 70.82 713 1877.97 0.25 0.82 8.42 154.93

is determined, the excess data x; — i, approximately obey the
GPD distribution. Regardless of any threshold p (¢ > pq),
the shape parameter £ and scale parameter 3 of the GPD
should remain unchanged. Therefore, information can be
obtained on the transformation relationship between B(u)
and threshold p (¢ > ) from (3).

Bu) =B o) +& (1~ o) - (11)

Let B* () = Blug) +&(u—4); B* (1) is called the modified
scale, and the values of 8* (1) will not change when threshold
p changes. Therefore, when the interval threshold value is
determined by MEF, the accuracy threshold can be estimated
by B*(u). Estimating the threshold using 3* (i) is detailed in
Section 4.2.

In this paper, the EVT model of the geological anomaly
takes full account of the characteristic of the geological
anomaly distribution and the practical features of the EVT.
Relative to the geological background value, the anomaly and
extreme value can be used to describe the geological anomaly.
The observations of the geological anomaly are located in the
tail of the samples, which are related to the random characters
in the process of quantification at the very large or small
level and estimate the probability of the extreme event in
the existing observation levels—these characteristics are also
the contents of the EVT. The EVT is a branch of statistics
that studies the limiting distribution of the minimum and
maximum value and evaluates the risk of extreme events.
Therefore, the mathematical foundation of the geological
anomaly is described by the EVT. On the one hand, the EVT
describes the characteristic of the geological anomaly distri-
bution from the perspective of mathematics; the results from
(3) show the distribution of the sample data, which is proved
in (12). On the other hand, the EVT provides a quantitative
and digital research method for predicting and evaluating
the mineral resources, which is proved in Figure 10. Besides,
this paper also discusses the methods of estimate parameters
and the threshold of the EVT. Consequently, a mathematical
statistical model is established for quantitative geological data
and geology information where the data exceed the threshold
of the sample in (12). Therefore, the ability of the EVT model
to identify the geological anomaly is feasible.

4. The Model Application in Identifying
the Geological Anomaly of the Jiguanzui
Cu-Au Mining Area

In order to show the effect of identifying the anomaly using
the EVT model with geological anomaly recognition, the
model was applied to identify the anomaly in an actual
mining area. The study data with Cu and Au originate from
26 exploration lines of the Jiguanzui Cu-Au mining area in
Hubei, China. The count of the sample data with Cu and Au

is 14309. The Jiguanzui Cu-Au mining deposit is the blind
deposits at the lower part of the Quaternary overburden
layer. Currently, I, I, III, and VII main ore body groups, 14
main ore bodies, and 105 small fragmentary ore bodies have
been identified in the mining area. The main ore bodies of
the Jiguanzui Cu-Au mining area are distributed in the 013
to 034 lines, which are 950 meters long, the width is 160-
800 meters, the elevation ranges from —5m to —1412 m deep
extension, and the level projection area of the ore bodies is
0.58 square kilometers. The overall distribution of the ore
bodies is northeast 30°, the trend of the ore bodies is northeast
15°-72°, and thelocal trend of the ore bodies is northwest. I, II,
111, and VII ore bodies are arranged in the form of an echelon,
in which the tendency is northwest and the local tendency is
south. The main ore bodies occur in the fault basin at the edge
of the northwestern rock body of the Tonglushan, near the
contact zone of the dolomitic marble, the quartz monzonite
diorite porphyry, and quartz diorite in the Lower Triassic
Jialingjiang Formation, and near the different lithology and
the echelon fracture of dolomitic marble. The pattern of the
Jiguanzui Cu-Au mining deposit is shown in Figure 3.

4.1. The Condition Test of the Model

4.1.1. The Posttail Test of Sample Data. Firstly, this paper
analyses the basic statistics of the Cu and Au elements, and
the results are shown in Table 1. From Table 1, we can see that
the skewness of the sample data is greater than zero, and the
sample data are not normally distributed, that is, distributed
to the right. By observing the coefficient of variation, it is seen
that the coefficient of variation of Au is smaller than that of
Cu, and the stability of Au is higher than that of Cu. Besides,
the kurtosis of Cu and Au is greater than that of the normal
distribution (of which the kurtosis value is 3), which results
in a leptokurtic distribution for Cu and Au. Therefore, the
distribution of Cu and Au is shown to be skewed to the right
with leptokurtic characteristics. Secondly, in order to indicate
the difference between the actual distribution and normal
distribution, Q-Q plot can be used for the observation test
(Figure 4). The distribution of Cu and Au is also shown to be
skewed to the right with posttail characteristics.

4.1.2. The Stationary Test of the Sample Data. The stationary
test mainly inspects the self-correlation of the geological data;
the common methods of the stationary test are as follows: the
augmented Dickey-Fuller (ADF) and sequence correlation
analysis. Through the ADF, we can obtain the test results
of the sample data (Table 2). The ¢-statistics of Cu and Au
are —33.93498 and —13.19081, respectively, which are smaller
than their own 1% significant level. Therefore, the sequences
of Cu and Au do not have unit roots; they are stationary
sequences. The results of the sequence correlation analysis are
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The third metallogenic region
The fourth metallogenic region

FIGURE 3: The pattern of the Jiguanzui Cu-Au mining deposit.

TABLE 2: The ADF test of Cu and Au.

Test critical values

Elements ADT (t-statistic) Probability
1% level 5% level 10% level

Cu —33.93498 —2.565127 -1.940847 -1.616685

Au —13.19081 —2.565127 -1.940847 -1.616685

shown in Figure 5, where we can see that the autocorrelation
coefficients (AC) and the partial autocorrelation coefficient
(PAC) are not zero, and the significance of Q-states is high,
so the uncorrelated hypothesis cannot be rejected. Therefore,
the sequence of the geological data is a stationary time series.

Together, the results indicate that the data follow a
stationary sequence, and the distributions of Cu and Au have
posttail characteristics, indicating that they are abnormally
distributed. Therefore, we can use the EVT model of the
geological anomaly to identify the anomaly.
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4.2. The Solution of the Model

4.2.1. Estimate the Parameters and Threshold. Through the
EVT model of the geological anomaly, we can calculate the
MEF of Cu and Au and plot the scatter diagram of the MEF
(Figure 6). From Figure 6, it is seen that, in the interval
[784.5406, 841.3659] with Cu and interval [72.1178, 85.1918]
with Au, E(y) for Cu and Au follows an approximately linear
distribution. These intervals are selected as the threshold
for Cu and Au. As the result of the threshold selection
is subjective, modified scale 8*(u) is used to estimate the
accuracy threshold. Based on f*(u), if initial threshold value
Yo is determined, regardless of any threshold p (u > ),
the shape parameter & and scale parameter 5 of GPD will
not change. Uniformly selecting 50 threshold values from
[784.5406, 841.3659] and [72.1178, 85.1918], respectively, we
can obtain the transformation relations between f*(u), &,
and the threshold p (4 > y,) for Cu and Au using (3) and
(11); see Figures 7 and 8. In order to ensure the accuracy
of the EVT, the threshold selection is as large as possible
in the permissible range of threshold estimation where the
data show the stationary characteristic (“as discussed by Cao

and Zhang [24]”). From Figures 7 and 8, it is seen that the
threshold of Cu is 816.4006 and that of Au is 75.4736. After
the thresholds are determined, the parameters of the EVT
model of the geological anomaly can be estimated using the
moment method, which reveals that the shape parameter of
Cu is 0.3162 and that of Au is 0.3342; the scale parameter of
Cu is 440.9216 and that of Au is 31.5699. Then, inserting the
thresholds and parameters into the GPD, the distribution of
the excess threshold of Cu and Au can be obtained by

0.3162 -1/0.3162
Fo(x)=1- (1 42208 ) ,
o (%) 4409216
) (12)
03342 \ 703
Fo (x)=1- (1 + )
au (%) 31.5699

The distribution of the excess threshold is called the
abnormal probability distribution. In the mineral deposit pre-
diction, information on the geological data can be described
and expressed by the distribution of the excess threshold.

4.2.2. The Diagnostic Test of the Model and Identification
of the Anomaly. The diagnostic test shows whether the
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FIGURE 9: The GPD fitting of the sample data. (a) is the distribution fitting of Cu and (b) is the distribution fitting of Au.
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FIGURE 10: The identified anomaly region of Cu and Au. (a) is the anomaly region of Cu and (b) is the anomaly region of Au.

selection of the thresholds is reasonable. Fitting the excess
threshold of the sample data using the GPD (Figure 9)
indicates that the excess threshold of the sample data is in
the vicinity of the line; the results show that the theoretical
distribution and actual distribution of the sample data are
consistent. Therefore, the threshold selection is reasonable.
There are currently seven mining drill holes, that is, KZK10,
KZK11, KZK23, KZK28, ZK02618, ZK02619, and ZK02620,

and the exploitation ore bodies are mostly VII main ore
body in the 26 exploration lines of the Cu-Au mining area.
GIS technology is used to show the geological anomaly
region with the selection of the thresholds (Figure 10).
From Figure 10, it is seen that the anomaly region of Cu
and Au is consistent with the range of ore bodies of the
actual engineering exploration, which has a high indicating
function with respect to ore prospecting. The results show
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that the EVT model of the geological anomaly is good at
mineral deposit prediction, and it has good prospecting
significance.

5. Conclusion

In this study, the proposed EVT model of the geological
anomaly was applied to identify geochemical anomalies
associated with Cu and Au mineralization. The results of this
study led to the following:

(1) The characteristics of the geological anomaly and the
principle of EVT were studied; knowledge of the dis-
tribution of the EVT coincides with the distribution
of the geological anomaly data. The designed EVT
model of the geological anomaly takes full account
of the characteristic of the geological anomaly and
the practical features of the EVT. The threshold
selection and parameter estimates of the model were
determined.

(2) The proposed EVT model of the geological anomaly
was successfully applied to identify the geological
anomaly region in the Jiguanzui Cu-Au mining area.
The results show that the anomaly threshold of Cu is
816.4006 and that of Au is 75.4736; the shape param-
eter of Cu is 0.3162 and that of Au is 0.3342; and the
scale parameter of Cu is 440.9216 and that of the Au
is 31.5699. The abnormal probability distribution was
also determined. Testing the results of the model by
fitting the excess threshold of the sample data showed
that the results of the theoretical distribution and
actual distribution of the sample data were consistent.

(3) The geological anomalies of Cu and Au predicted
by the EVT model are consistent with the range
of ore bodies of the actual engineering exploration.
The EVT model has a high indicating function with
respect to ore prospecting, and it is applicable for the
exploration of mineral deposits.
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