2,468 research outputs found

    Biodiversity and ecosystem function in soil

    Get PDF
    1. Soils are one of the last great frontiers for biodiversity research and are home to an extraordinary range of microbial and animal groups. Biological activities in soils drive many of the key ecosystem processes that govern the global system, especially in the cycling of elements such as carbon, nitrogen and phosphorus. 2. We cannot currently make firm statements about the scale of biodiversity in soils, or about the roles played by soil organisms in the transformations of organic materials that underlie those cycles. The recent UK Soil Biodiversity Programme (SBP) has brought a unique concentration of researchers to bear on a single soil in Scotland, and has generated a large amount of data concerning biodiversity, carbon flux and resilience in the soil ecosystem. 3. One of the key discoveries of the SBP was the extreme diversity of small organisms: researchers in the programme identified over 100 species of bacteria, 350 protozoa, 140 nematodes and 24 distinct types of arbuscular mycorrhizal fungi. Statistical analysis of these results suggests a much greater 'hidden diversity'. In contrast, there was no unusual richness in other organisms, such as higher fungi, mites, collembola and annelids. 4. Stable-isotope (C-13) technology was used to measure carbon fluxes and map the path of carbon through the food web. A novel finding was the rapidity with which carbon moves through the soil biota, revealing an extraordinarily dynamic soil ecosystem. 5. The combination of taxonomic diversity and rapid carbon flux makes the soil ecosystem highly resistant to perturbation through either changing soil structure or removing selected groups of organisms

    High-Performance Chip- Assisted Microwave Photonic Functionalities

    Get PDF
    Integrated microwave photonics (IMWP) is poised to release the bottlenecks in modern wireless communication systems. The manipulation of microwave signals in the optical domain offers key advantages of broad bandwidth, reconfiguration, and fast tuning speeds. However, in current IMWP devices, there are some challenges that need to be overcome. These include the ~1 GHz frequency resolution of the IMWP functionalities, limited by the on-chip photonic functional devices' performance, which has prompted research into on-chip stimulated Brillouin scattering (SBS) to achieve sub-30 MHz signal processing capabilities. Equally important, the performance metrics including the noise figure, dynamic range, and the insertion loss, need to be improved before commercial deployment. While SBS offers significant advantages of high resolution and reconfigurability, there is potential for improved signal-to-noise ratios and, therefore, to obtain a low noise figure. In this letter, we present an overview of recent approaches for achieving high-performance IMWP functionalities, including SBS-induced noise management and the optimized MWP link configurations

    Stationary phase slip state in quasi-one-dimensional rings

    Full text link
    The nonuniform superconducting state in a ring in which the order parameter vanishing at one point is studied. This state is characterized by a jump of the phase by π\pi at the point where the order parameter becomes zero. In uniform rings such a state is a saddle-point state and consequently unstable. However, for non-uniform rings with e.g. variations of geometrical or physical parameters or with attached wires this state can be stabilized and may be realized experimentally.Comment: 6 pages, 7 figures, RevTex 4.0 styl

    The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?

    Get PDF
    Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was a complex region containing current helicity flux of opposite signs. The main positive sunspots were dominated by negative helicity fields, while positive helicity patches persisted both inside and around the main positive sunspots. Based on a comparison of two days of deduced current helicity density, pronounced changes were noticed which were associated with the occurrence of an X10 flare that peaked at 20:49 UT, 2003 October 29. The average current helicity density (negative) of the main sunspots decreased significantly by about 50. Accordingly, the helicity densities of counter-helical patches (positive) were also found to decay by the same proportion or more. In addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100 keV energy range. The cores of these two HXR footpoints were adjacent to the positions of two patches with positive current helicity which disappeared after the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted from reconnection between magnetic flux tubes having opposite current helicity. Finally, the global decrease of current helicity in AR 10486 by ~50% can be understood as the helicity launched away by the halo coronal mass ejection (CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres

    Superconducting Order Parameter in Bi-Layer Cuprates: Occurrence of π\pi Phase Shifts in Corner Junctions

    Full text link
    We study the order parameter symmetry in bi-layer cuprates such as YBaCuO, where interesting π\pi phase shifts have been observed in Josephson junctions. Taking models which represent the measured spin fluctuation spectra of this cuprate, as well as more general models of Coulomb correlation effects, we classify the allowed symmetries and determine their associated physical properties. π\pi phase shifts are shown to be a general consequence of repulsive interactions, independent of whether a magnetic mechanism is operative. While it is known to occur in d-states, this behavior can also be associated with (orthorhombic) s-symmetry when the two sub-band gaps have opposite phase. Implications for the magnitude of TcT_c are discussed.Comment: 5 pages, RevTeX 3.0, 9 figures (available upon request

    High link performance of Brillouin-loss based microwave bandpass photonic filters

    Get PDF
    We present a high link-performance multi-band microwave photonic filter based on stimulated Brillouin scattering (SBS) loss responses. The bandpass filter response is formed by suppressing the out-of-band signal using multiple broadened SBS loss responses, which avoids introducing additional noise in the passband. The low-noise SBS bandpass filter is implemented in an optimized high-performance MWP link, which enabled the demonstration of filter functionalities with a low noise figure, reconfigurability, and high resolution. A noise figure of 18.9 dB is achieved in the passband with a filter bandwidth of 0.3 GHz at a central frequency of 14 GHz, with a link gain of −13.9 dB and a spurious free dynamic range of 106 dB.Hz2/3. Bandwidth reconfiguration from 0.1 GHz to 1 GHz and multi-bandpass responses are also demonstrated
    • …
    corecore