6,885 research outputs found
A survey on performance analysis of warehouse carousel systems
This paper gives an overview of recent research on the performance evaluation and design of carousel systems. We discuss picking strategies for problems involving one carousel, consider the throughput of the system for problems involving two carousels, give an overview of related problems in this area, and present an extensive literature review. Emphasis has been given on future research directions in this area
Monte Carlo methods of PageRank computation
We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink matrix and is highly parallelizable. We study confidence intervals, and discover drawbacks of the absolute error criterion and the relative error criterion. Further, we suggest a so-called weighted relative error criterion, which ensures a good accuracy in a relatively small number of simulation runs. Moreover, with the weighted relative error measure, the complexity of the algorithm does not depend on the web structure
Asymptotic analysis for personalized Web search
Personalized PageRank is used in Web search as an importance measure for Web documents. The goal of this paper is to characterize the tail behavior of the PageRank distribution in the Web and other complex networks characterized by power laws. To this end, we model the PageRank as a solution of a stochastic equation , where 's are distributed as . This equation is inspired by the original definition of the PageRank. In particular, models the number of incoming links of a page, and stays for the user preference. Assuming that or are heavy-tailed, we employ the theory of regular variation to obtain the asymptotic behavior of under quite general assumptions on the involved random variables. Our theoretical predictions show a good agreement with experimental data
Image inversion analysis of the HST OTA (Hubble Space Telescope Optical Telescope Assembly), phase A
Technical work during September-December 1990 consisted of: (1) analyzing HST point source images obtained from JPL; (2) retrieving phase information from the images by a direct (noniterative) technique; and (3) characterizing the wavefront aberration due to the errors in the Hubble Space Telescope (HST) mirrors, in a preliminary manner. This work was in support of JPL design of compensating optics for the next generation wide-field planetary camera on HST. This digital technique for phase retrieval from pairs of defocused images, is based on the energy transport equation between these image planes. In addition, an end-to-end wave optics routine, based on the JPL Code 5 prescription of the unaberrated HST and WFPC, was derived for output of the reference phase front when mirror error is absent. Also, the Roddier routine unwrapped the retrieved phase by inserting the required jumps of +/- 2(pi) radians for the sake of smoothness. A least-squares fitting routine, insensitive to phase unwrapping, but nonlinear, was used to obtain estimates of the Zernike polynomial coefficients that describe the aberration. The phase results were close to, but higher than, the expected error in conic constant of the primary mirror suggested by the fossil evidence. The analysis of aberration contributed by the camera itself could be responsible for the small discrepancy, but was not verified by analysis
Optimal picking of large orders in carousel systems
A carousel is an automated storage and retrieval system which consists of a circular disk with a large number of shelves and drawers along its circumference. The disk can rotate either direction past a picker who has a list of items that have to be collected from different drawers. In this paper, we assume that locations of the items are independent and have a continous non-uniform distribution over the carousel circumference. For this model, we determine a limiting behavior of the shortest rotation time needed to collect one large order. In particular, our limiting result indicates that if an order is large, then it is optimal to allocate {\it less} frequently asked items {\it close} to the picker's starting position. This is in contrast with picking of small orders where the optimal allocation rule is clearly the opposite. We also discuss travel times and allocation issues for optimal picking of sequential orders
Degree-degree correlations in random graphs with heavy-tailed degrees
We investigate degree-degree correlations for scale-free graph sequences. The main conclusion of this paper is that the assortativity coefficient is not the appropriate way to describe degree-dependences in scale-free random graphs. Indeed, we study the infinite volume limit of the assortativity coefficient, and show that this limit is always non-negative when the degrees have finite first but infinite third moment, i.e., when the degree exponent of the density satisfies . More generally, our results show that the correlation coefficient is inappropriate to describe dependencies between random variables having infinite variance. We start with a simple model of the sample correlation of random variables and , which are linear combinations with non-negative coefficients of the same infinite variance random variables. In this case, the correlation coefficient of and is not defined, and the sample covariance converges to a proper random variable with support that is a subinterval of . Further, for any joint distribution with equal marginals being non-negative power-law distributions with infinite variance (as in the case of degree-degree correlations), we show that the limit is non-negative. We next adapt these results to the assortativity in networks as described by the degree-degree correlation coefficient, and show that it is non-negative in the large graph limit when the degree distribution has an infinite third moment. We illustrate these results with several examples where the assortativity behaves in a non-sensible way. We further discuss alternatives for describing assortativity in networks based on rank correlations that are appropriate for infinite variance variables. We support these mathematical results by simulations
- …
