12,300 research outputs found

    Preliminary design-lift/cruise fan research and technology airplane flight control system

    Get PDF
    This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy

    A map on the space of rational functions

    Full text link
    We describe dynamical properties of a map F\mathfrak{F} defined on the space of rational functions. The fixed points of F\mathfrak{F} are classified and the long time behavior of a subclass is described in terms of Eulerian polynomials

    Technical management techniques for identification and control of industrial safety and pollution hazards

    Get PDF
    Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management

    The role of dietary polyphenols in the moderation of the inflammatory response in early stage colorectal cancer

    Get PDF
    Current focus in colorectal cancer management is on reducing overall mortality by increasing the number of early stage cancers diagnosed and treated with curative intent. Despite the success of screening programmes in down-staging colorectal cancer, interval cancer rates are substantial and other strategies are desirable. Sporadic colorectal cancer is largely associated with lifestyle factors including diet. Polyphenols are phytochemicals ingested as part of a normal diet which are abundant in plant foods including fruits/berries and vegetables. These may exert their anti-carcinogenic effects via the modulation of inflammatory pathways. Key signal transduction pathways are fundamental to the association of inflammation and disease progression including those mediated by NF-κB and STAT, PI3K and COX. Our aim was to examine the evidence for the effect of dietary polyphenols intake on tumour and host inflammatory responses to determine if polyphenols may be effective as part of a dietary intervention. There is good epidemiological evidence of a reduction in colorectal cancer risk from case-control and cohort studies assessing polyphenol intake. It would be premature to suggest a major public health intervention to promote their consumption however, dietary change is safe and feasible, emphasising the need for further investigation of polyphenols and colorectal cancer risk

    Gravitational Instability in Collisionless Cosmological Pancakes

    Get PDF
    The gravitational instability of cosmological pancakes composed of collisionless dark matter in an Einstein-de Sitter universe is investigated numerically to demonstrate that pancakes are unstable with respect to fragmentation and the formation of filaments. A ``pancake'' is defined here as the nonlinear outcome of the growth of a 1D, sinusoidal, plane-wave, adiabatic density perturbation. We have used high resolution, 2D, N-body simulations by the Particle-Mesh (PM) method to study the response of pancakes to perturbation by either symmetric (density) or antisymmetric (bending or rippling) modes, with corresponding wavevectors k_s and k_a transverse to the wavevector k_p of the unperturbed pancake plane-wave. We consider dark matter which is initially ``cold'' (i.e. with no random thermal velocity in the initial conditions). We also investigate the effect of a finite, random, isotropic, initial velocity dispersion (i.e. initial thermal velocity) on the fate of pancake collapse and instability. Pancakes are shown to be gravitationally unstable with respect to all perturbations of wavelength l<l_p (where l_p= 2pi/k_p). These results are in contradiction with the expectations of an approximate, thin-sheet energy argument.Comment: To appear in the Astrophysical Journal (1997), accepted for publication 10/10/96, single postscript file, 61 pages, 19 figure

    7-Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV

    Get PDF
    We describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for the reaction p + Li7 for incident protons with energies up to 150 MeV. The important 7-Li(p,n_0) and 7-Li(p,n_1) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.Comment: 11 pages, 8 figures, LaTeX, submitted to Proc. 2000 ANS/ENS International Meeting, Nuclear Applications of Accelerator Technology (AccApp00), November 12-16, Washington, DC, US

    Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations

    Full text link
    We explore some of the effects that discreteness and two-body scattering may have on N-body simulations with ``realistic'' cosmological initial conditions. We use an identical subset of particles from the initial conditions for a 1283128^3 Particle-Mesh (PM) calculation as the initial conditions for a variety P3^3M and Tree code runs. We investigate the effect of mass resolution (the mean interparticle separation) since most ``high resolution'' codes only have high resolution in gravitational force. The phase-insensitive two--point statistics, such as the power spectrum (autocorrelation) are somewhat affected by these variations, but phase-sensitive statistics show greater differences. Results converge at the mean interparticle separation scale of the lowest mass-resolution code. As more particles are added, but the force resolution is held constant, the P3^3M and the Tree runs agree more and more strongly with each other and with the PM run which had the same initial conditions. This shows high particle density is necessary for correct time evolution, since many different results cannot all be correct. However, they do not so converge to a PM run which continued the fluctuations to small scales. Our results show that ignoring them is a major source of error on comoving scales of the missing wavelengths. This can be resolved by putting in a high particle density. Since the codes never agree well on scales below the mean comoving interparticle separation, we find little justification for quantitative predictions on this scale. Some measures vary by 50%, but others can be off by a factor of three or more. Our results suggest possible problems with the density of galaxy halos, formation of early generation objects such as QSO absorber clouds, etc.Comment: Revised version to be published in Astrophysical Journal. One figure changed; expanded discussion, more information on code parameters. Latex, 44 pages, including 19 figures. Higher resolution versions of Figures 10-15 available at: ftp://kusmos.phsx.ukans.edu/preprints/nbod

    Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment?

    Full text link
    We use measurements of the projected galaxy correlation function w_p and galaxy void statistics to test whether the galaxy content of halos of fixed mass is systematically different in low density environments. We present new measurements of the void probability function (VPF) and underdensity probability function (UPF) from Data Release Four of the Sloan Digital Sky Survey, as well as new measurements of the VPF from the full data release of the Two-Degree Field Galaxy Redshift Survey. We compare these measurements to predictions calculated from models of the Halo Occupation Distribution (HOD) that are constrained to match both w_p and the space density of galaxies. The standard implementation of the HOD assumes that galaxy occupation depends on halo mass only, and is independent of local environment. For luminosity-defined samples, we find that the standard HOD prediction is a good match to the observations, and the data exclude models in which galaxy formation efficiency is reduced in low-density environments. More remarkably, we find that the void statistics of red and blue galaxies (at L ~ 0.4L_*) are perfectly predicted by standard HOD models matched to the correlation function of these samples, ruling out "assembly bias" models in which galaxy color is correlated with large-scale environment at fixed halo mass. We conclude that the luminosity and color of field galaxies are determined predominantly by the mass of the halo in which they reside and have little direct dependence on the environment in which the host halo formed. In broader terms, our results show that the sizes and emptiness of voids found in the distribution of L > 0.2L_* galaxies are in excellent agreement with the predictions of a standard cosmological model with a simple connection between galaxies and dark matter halos. (abridged)Comment: 20 emulateapj pages, 9 figures. submitted to Ap

    Expertise in Trial Advocacy: Some Considerations for Inquiry into Its Nature and Development

    Get PDF
    It is the central thesis of this paper that what is needed to assess the validity of many of the criticisms directed toward legal practice and training, and to resolve many of the controversies surrounding attempts to correct these criticisms, is a representation or documentation of the structure of expertise in legal practice - especially in trial advocacy since this represents the focus of most complaints. Without such a representation it is difficult to support allegations of incompetence or to defend the efficiency of specific reform on other than subjective or intuitive grounds. At this time no systematic representation exists
    corecore