11,228 research outputs found

    Fiduciaries Under ERISA: A Narrow Path to Tread

    Get PDF
    The Employee Retirement Income Security Act of 1974\u27(ERISA) introduced a new era for a broad spectrum of American society. The new Act had a startling impact not only upon pension plan sponsors, participants, and beneficiaries, but also upon the myriad group of individuals and institutions providing services,advice, and counsel to the pension industry. This article primarily will consider the new law as it affects the fiduciary, creating new responsibilities and increased liability. Several areas in which the new law creates special problems then will be considered

    Propfan Test Assessment (PTA)

    Get PDF
    The objectives of the Propfan Test Assessment (PTA) Program were to validate in flight the structural integrity of large-scale propfan blades and to measure noise characteristics of the propfan in both near and far fields. All program objectives were met or exceeded, on schedule and under budget. A Gulfstream Aerospace Corporation GII aircraft was modified to provide a testbed for the 2.74m (9 ft) diameter Hamilton Standard SR-7 propfan which was driven by a 4475 kw (600 shp) turboshaft engine mounted on the left-hand wing of the aircraft. Flight research tests were performed for 20 combinations of speed and altitude within a flight envelope that extended to Mach numbers of 0.85 and altitudes of 12,192m (40,000 ft). Propfan blade stress, near-field noise on aircraft surfaces, and cabin noise were recorded. Primary variables were propfan power and tip speed, and the nacelle tilt angle. Extensive low altitude far-field noise tests were made to measure flyover and sideline noise and the lateral attenuation of noise. In coopertion with the FAA, tests were also made of flyover noise for the aircraft at 6100m (20,000 ft) and 10,668m (35,000 ft). A final series of tests were flown to evaluate an advanced cabin wall noise treatment that was produced under a separate program by NASA-Langley Research Center

    Hot melt adhesive attachment pad

    Get PDF
    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond

    Acute carpal tunnel syndrome: early nerve decompression and surgical stabilization for bony wrist trauma

    Get PDF
    Background We undertook this study to investigate the outcomes of surgical treatment for acute carpal tunnel syndrome following our protocol for concurrent nerve decompression and skeletal stabilization for bony wrist trauma to be undertaken within 48-hours. Methods We identified all patients treated at our trauma centre following this protocol between 1 January 2014 and 31 December 2019. All patients were clinically reviewed at least 12 months following surgery and assessed using the Brief Michigan Hand Outcomes Questionnaire (bMHQ), the Boston Carpal Tunnel Questionnaire (BCTQ) and sensory assessment with Semmes-Weinstein monofilament testing. Results The study group was made up of 35 patients. Thirty-three patients were treated within 36-hours. Patients treated with our unit protocol for early surgery comprising nerve decompression and bony stabilization within 36-hours, report excellent outcomes at medium term follow up. Conclusions We propose that nerve decompression and bony surgical stabilization should be undertaken as soon as practically possible once the diagnosis is made. This is emergent treatment to protect and preserve nerve function. In our experience, the vast majority of patients were treated within 24-hours however where a short period of observation was required excellent results were generally achieved where treatment was completed within 36-hours

    Interstellar Scintillation of the Polarized Flux Density in Quasar, PKS 0405-385

    Full text link
    The remarkable rapid variations in radio flux density and polarization of the quasar PKS 0405-385 observed in 1996 are subject to a correlation analysis, from which characteristic time scales and amplitudes are derived. The variations are interpreted as interstellar scintillations. The cm wavelength observations are in the weak scintillation regime for which models for the various auto- and cross-correlations of the Stokes parameters are derived and fitted to the observations. These are well modelled by interstellar scintillation (ISS) of a 30 by 22 micro-as source, with about 180 degree rotation of the polarization angle along its long dimension. This success in explaining the remarkable intra-day variations (IDV)in polarization confirms that ISS gives rise to the IDV in this quasar. However, the fit requires the scintillations to be occurring much closer to the Earth than expected according to the standard model for the ionized interstellar medium (IISM). Scattering at distances in the range 3-30 parsec are required to explain the observations. The associated source model has a peak brightness temperature near 2.0 10^{13}K, which is about twenty-five times smaller than previously derived for this source. This reduces the implied Doppler factor in the relativistic jet, presumed responsible to 10-20, high but just compatible with cm wavelength VLBI estimates for the Doppler factors in Active Galactic Nuclei (AGNs).Comment: 43 pages 15 figures, accepted for ApJ Dec 200

    Magnetohydrodynamics of Cloud Collisions in a Multi-phase Interstellar Medium

    Get PDF
    We extend previous studies of the physics of interstellar cloud collisions by beginning investigation of the role of magnetic fields through 2D magnetohydrodynamic (MHD) numerical simulations. We study head-on collisions between equal mass, mildly supersonic diffuse clouds. We include a moderate magnetic field and two limiting field geometries, with the field lines parallel (aligned) and perpendicular (transverse) to the colliding cloud motion. We explore both adiabatic and radiative cases, as well as symmetric and asymmetric ones. We also compute collisions between clouds evolved through prior motion in the intercloud medium and compare with unevolved cases. We find that: In the (i) aligned case, adiabatic collisions, like their HD counterparts, are very disruptive, independent of the cloud symmetry. However, when radiative processes are taken into account, partial coalescence takes place even in the asymmetric case, unlike the HD calculations. In the (ii) transverse case, collisions between initially adjacent unevolved clouds are almost unaffected by magnetic fields. However, the interaction with the magnetized intercloud gas during the pre-collision evolution produces a region of very high magnetic energy in front of the cloud. In collisions between evolved clouds with transverse field geometry, this region acts like a ``bumper'', preventing direct contact between the clouds, and eventually reverses their motion. The ``elasticity'', defined as the ratio of the final to the initial kinetic energy of each cloud, is about 0.5-0.6 in the cases we considered. This behavior is found both in adiabatic and radiative cases.Comment: 40 pages in AAS LaTeX v4.0, 13 figures (in degraded jpeg format). Full resolution images as well as mpeg animations are available at http://www.msi.umn.edu:80/Projects/twj/mhd-cc/ . Accepted for publication in The Astrophysical Journa
    corecore