1,903 research outputs found

    The Effect of Self-Control on the Construction of Risk Perceptions

    Get PDF
    We show that the way decision makers construct risk perceptions is systematically influenced by their level of self-control: low self-control results in greater weighting of probability and reduced weighting of consequences of negative outcomes in formulating overall threat perceptions. Seven studies demonstrate such distorted risk construction in wide-ranging risk domains. The effects hold for both chronic and manipulated levels of perceived self-control and are observed only for risks involving high personal agency (e.g., overeating, smoking, drinking). As an important implication of our results, we also demonstrate that those lower (higher) in self-control show relatively less (more) interest in products and lifestyle changes reducing consequences (e.g., a pill that heals liver damage from drinking) than those reducing likelihood of risks (e.g., a pill that prevents liver damage from drinking). We also explore several possible underlying processes for the observed effect and discuss the theoretical and managerial relevance of our findings.postprin

    System Would Detect Foreign-Object Damage in Turbofan Engine

    Get PDF
    A proposed data-fusion system, to be implemented mostly in software, would further process the digitized and preprocessed outputs of sensors in a turbofan engine to detect foreign-object damage (FOD) [more precisely, damage caused by impingement of such foreign objects as birds, pieces of ice, and runway debris]. The proposed system could help a flight crew to decide what, if any, response is necessary to complete a flight safely, and could aid mechanics in deciding what post-flight maintenance action might be needed. The sensory information to be utilized by the proposed system would consist of (1) the output of an accelerometer in an engine-vibration-monitoring subsystem and (2) features extracted from a gas path analysis. ["Gas path analysis" (GPA) is a term of art that denotes comprehensive analysis of engine performance derived from readings of fuel-flow meters, shaft-speed sensors, temperature sensors, and the like.] The acceleration signal would first be processed by a wavelet-transform-based algorithm, using a wavelet created for the specific purpose of finding abrupt FOD-induced changes in noisy accelerometer signals. Two additional features extracted would be the amplitude of vibration (determined via a single- frequency Fourier transform calculated at the rotational speed of the engine), and the rate of change in amplitude due to an FOD-induced rotor imbalance. This system would utilize two GPA features: the fan efficiency and the rate of change of fan efficiency with time. The selected GPA and vibrational features would be assessed by two fuzzy-logic inference engines, denoted the "Gas Path Expert" and the "Vibration Expert," respectively (see Figure 1). Each of these inference engines would generate a "possibility" distribution for occurrence of an FOD event: Each inference engine would assign, to its input information, degrees of membership, which would subsequently be transformed into basic probability assignments for the gas path and vibration components. The outputs of the inference engines would be fused by use of Dempster s combination algorithm (more precisely, an algorithm, based on the Dempster-Shafer-Yager theory of evidence, for fusing uncertain or imprecise information) to provide a reduced body of information to a human or computer decision maker. Figure 2 depicts some outputs generated in response to simulated accelerometer and GPA signal

    How Do Nonnative Plants Affect Small Mammals? Effects of Vegetation Structure on Escape Ability of Small Mammals

    Get PDF
    Nonnative plants can alter habitat of native animals through changes in vegetation structure and availability of food resources. Invasion of nonnative cheatgrass (Bromus tectorum L.) is an acute threat to persistence of native wildlife in the sagebrush steppe ecosystem of southwestern Montana. Cheatgrass invasion increases vegetation density and litter depth between shrubs, potentially increasing risk of predation by impeding an animal’s ability to escape. We examined how vegetation density and litter depth affects maximum sprint speed, as one component of a project investigating how changes in the structural complexity of vegetation due to cheatgrass invasion affects small mammals. Using artificial materials to mimic cheatgrass structure and litter, we timed deer mice (Peromyscus maniculatus) sprinting through a range of litter depths and structure densities along a 2 m-long track, to assess each animal’s ability to flee from a predator. We found that median sprint time increased 15 percent (95% CI = 13-18%) for every additional 1000 stems/m2; increases in litter depth ? 9 cm had little effect on sprint speed. If predation is a limiting factor for small mammal populations within sagebrush steppe, management tools that can reduce vegetation density of nonnative plants may be beneficial. Litter removal may only benefit small mammals if accumulations are reduced to less than 9 cm in depth. Increasing our understanding of how small mammals respond to changes in vegetation architecture caused by nonnative plants may help inform management and restoration efforts, especially when complete eradication is unlikely

    Mechanisms Driving Nonnative Plant-Mediated Changes in Small Mammal Populations and Communities

    Get PDF
    Nonnative plants can dramatically alter habitat of native animals through changes in vegetation structure and availability of food resources. Range expansion by nonnative cheatgrass (Bromus tectorum L.) is an acute threat to persistence of native species in the sagebrush-steppe ecosystem of southwestern Montana. As climate changes over the next century, rangelands in Montana are likely to become more hospitable to this invasive grass. Although declines in small mammal diversity and abundance previously have been documented with cheatgrass invasion, we know little about the underlying mechanisms driving these changes. We will explore potential mechanisms for nonnative plant-mediated changes on three species of native mammals: deer mouse (Peromyscus maniculatus), montane vole (Microtus montanus), and sagebrush vole (Lemmiscus curtatus) in sagesteppe communities at the Gravelly-Blacktail Wildlife Management Area (WMA). We will quantify changes in vegetation characteristics in areas invaded by cheatgrass; based on this information, we will develop experimental treatments that mimic individual modified characteristics. We will apply these treatments to randomly selected plots on the WMA and establish appropriate controls. Using standard capture-mark-recapture methods, we will estimate abundance and species diversity of small mammals and make comparisons between treated and control plots to quantify effects. We will also quantify and compare body condition, predator avoidance, and diet to explore additional mechanisms driving changes in mammalian abundance and diversity. Identifying the mechanisms for how cheatgrass invasion alters populations and communities of native species will provide critical information to inform conservation and management of some of Montana’s native small mammals

    A Sequential Shifting Algorithm for Variable Rotor Speed Control

    Get PDF
    A proof of concept of a continuously variable rotor speed control methodology for rotorcraft is described. Variable rotor speed is desirable for several reasons including improved maneuverability, agility, and noise reduction. However, it has been difficult to implement because turboshaft engines are designed to operate within a narrow speed band, and a reliable drive train that can provide continuous power over a wide speed range does not exist. The new methodology proposed here is a sequential shifting control for twin-engine rotorcraft that coordinates the disengagement and engagement of the two turboshaft engines in such a way that the rotor speed may vary over a wide range, but the engines remain within their prescribed speed bands and provide continuous torque to the rotor; two multi-speed gearboxes facilitate the wide rotor speed variation. The shifting process begins when one engine slows down and disengages from the transmission by way of a standard freewheeling clutch mechanism; the other engine continues to apply torque to the rotor. Once one engine disengages, its gear shifts, the multi-speed gearbox output shaft speed resynchronizes and it re-engages. This process is then repeated with the other engine. By tailoring the sequential shifting, the rotor may perform large, rapid speed changes smoothly, as demonstrated in several examples. The emphasis of this effort is on the coordination and control aspects for proof of concept. The engines, rotor, and transmission are all simplified linear models, integrated to capture the basic dynamics of the problem
    • …
    corecore