161 research outputs found

    Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images

    Full text link
    Automated classification of histopathological whole-slide images (WSI) of breast tissue requires analysis at very high resolutions with a large contextual area. In this paper, we present context-aware stacked convolutional neural networks (CNN) for classification of breast WSIs into normal/benign, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). We first train a CNN using high pixel resolution patches to capture cellular level information. The feature responses generated by this model are then fed as input to a second CNN, stacked on top of the first. Training of this stacked architecture with large input patches enables learning of fine-grained (cellular) details and global interdependence of tissue structures. Our system is trained and evaluated on a dataset containing 221 WSIs of H&E stained breast tissue specimens. The system achieves an AUC of 0.962 for the binary classification of non-malignant and malignant slides and obtains a three class accuracy of 81.3% for classification of WSIs into normal/benign, DCIS, and IDC, demonstrating its potentials for routine diagnostics

    Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology

    Full text link
    Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that exhibit similar but not identical color appearance. Due to this color shift between laboratories, convolutional neural networks (CNNs) trained with images from one lab often underperform on unseen images from the other lab. Several techniques have been proposed to reduce the generalization error, mainly grouped into two categories: stain color augmentation and stain color normalization. The former simulates a wide variety of realistic stain variations during training, producing stain-invariant CNNs. The latter aims to match training and test color distributions in order to reduce stain variation. For the first time, we compared some of these techniques and quantified their effect on CNN classification performance using a heterogeneous dataset of hematoxylin and eosin histopathology images from 4 organs and 9 pathology laboratories. Additionally, we propose a novel unsupervised method to perform stain color normalization using a neural network. Based on our experimental results, we provide practical guidelines on how to use stain color augmentation and stain color normalization in future computational pathology applications.Comment: Accepted in the Medical Image Analysis journa

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Hierarchical Vision Transformers for Context-Aware Prostate Cancer Grading in Whole Slide Images

    Full text link
    Vision Transformers (ViTs) have ushered in a new era in computer vision, showcasing unparalleled performance in many challenging tasks. However, their practical deployment in computational pathology has largely been constrained by the sheer size of whole slide images (WSIs), which result in lengthy input sequences. Transformers faced a similar limitation when applied to long documents, and Hierarchical Transformers were introduced to circumvent it. Given the analogous challenge with WSIs and their inherent hierarchical structure, Hierarchical Vision Transformers (H-ViTs) emerge as a promising solution in computational pathology. This work delves into the capabilities of H-ViTs, evaluating their efficiency for prostate cancer grading in WSIs. Our results show that they achieve competitive performance against existing state-of-the-art solutions.Comment: Accepted at Medical Imaging meets NeurIPS 2023 worksho

    Uncertainty-guided annotation enhances segmentation with the human-in-the-loop

    Full text link
    Deep learning algorithms, often critiqued for their 'black box' nature, traditionally fall short in providing the necessary transparency for trusted clinical use. This challenge is particularly evident when such models are deployed in local hospitals, encountering out-of-domain distributions due to varying imaging techniques and patient-specific pathologies. Yet, this limitation offers a unique avenue for continual learning. The Uncertainty-Guided Annotation (UGA) framework introduces a human-in-the-loop approach, enabling AI to convey its uncertainties to clinicians, effectively acting as an automated quality control mechanism. UGA eases this interaction by quantifying uncertainty at the pixel level, thereby revealing the model's limitations and opening the door for clinician-guided corrections. We evaluated UGA on the Camelyon dataset for lymph node metastasis segmentation which revealed that UGA improved the Dice coefficient (DC), from 0.66 to 0.76 by adding 5 patches, and further to 0.84 with 10 patches. To foster broader application and community contribution, we have made our code accessible a
    corecore