5 research outputs found

    LIQUISOLID COMPACTS: AN INNOVATIVE APPROACH FOR DISSOLUTION ENHANCEMENT

    Get PDF
    The challenge faced by the majority of the pharmaceutical products is the poor solubility of the drug candidates which leads to low bioavailability. Liquisolid compact is one of the emerging techniques that enhances the dissolution of poorly water soluble drugs. Liquisolid system mentions to the formulation made by the transforming the liquid drug, either in the form of suspension or solution in non volatile solvents into a dry, non-sticky, free-flowing and compactable powder mixtures. This is achieved by mixing the suspension or solution of the drug with appropriate carriers and coating agents. The technology has the ability to increase aqueous solubility, rate of dissolution and absorption of poorly soluble drug by keeping it in molecularly dispersed form leading to its improved bioavailability when compared to conventional tablets. Liquisolid technology is the impending approach for enhancing the solubility of poorly water-soluble drug by adopting simple manufacturing process and low production cost

    Formulation and Optimization of Clotrimazole-Loaded Proniosomal Gel Using 32 Factorial Design

    No full text

    Formulation and Optimization of Clotrimazole-Loaded Proniosomal Gel Using 32 Factorial Design

    Get PDF
    The main aim of the study was to develop and statistically optimize the proniosomal gel for enhanced transdermal delivery using 32 factorial designs to investigate the influence of both non-ionic surfactant and cholesterol to maximize the entrapment efficiency and flux. The concentration of non-ionic surfactant and cholesterol were taken as independent variables, while entrapment efficiency and flux were taken as dependent variables. The study showed that the entrapment efficiency depends on both cholesterol and surfactant, whereas permeation flux depends only on the surfactant. Proniosomal gel showed a significantly enhanced drug permeation through the skin, with an enhancement ratio 3.81±1.85 when compared to the drug solution. Comparative evaluation of permeation studies and the in vitro release study of optimized proniosomal gel (F5) with that of marketed gel and carbopol gel showed that the penetration of the optimized formulation was enhanced 1.75 times in comparison with that of the marketed formulation, and the release was in a controlled manner. Similarly, the anticandidial activity showed a significantly higher activity (p<0.05) than the marketed and carbopol gel. This may be due to the enhanced penetration of noisome-containing drug through the fungal cell wall, inhibiting the ergo sterol synthesis, thereby causing the fungal cell death due to the presence of penetration enhancer. The stability study at two different temperatures (30 ± 2°C and 4 ± 2°C) confirmed that the formulations were stable even at the end of 45 days. Hence, proniosomal gel is an efficient carrier for the delivery of clotrimazole, thereby prolonging the action

    Development and evaluation of antimicrobial herbal formulations containing the methanolic extract of Samadera indica for skin diseases

    No full text
    Samadera indica Gaetrn (Simaroubaceae) is claimed to possess various pharmacological activities like antioxidant, antifungal, antitumor, antiviral, and so on, but its taste is bitter. The aim of the present study is to investigate the toxicity of the methanolic extract and to develop suitable herbal formulations of the methanolic extract of Samadera indica, having efficient antimicrobial activity. The methanolic extract prepared from the dried leaves of Samadera indica by continuous hot percolation, were used to examine the toxicity, according to the OECD 423 guidelines, in Swiss Albino mice. Topical formulations were prepared by incorporating Samadera indica (5% w / w) in an emulsifying ointment and a carbopol gel base and evaluated for physical parameters and in-vitro antimicrobial activity (S. aureus, P. aeruginosa and C. albicans). The study reveals that no animals under the study showed any clinical signs of toxicity or mortality when administered a dose of 5 - 2000 mg / kg body weight. Therefore, the maximum tolerated dose of the methanolic extract of Samadera indica was above 2000 mg / kg body weight. The formulated ointment and gel had acceptable physical parameters that showed that they were compatible with the skin, and in addition to this, these formulations passed the short-term stability studies. The in-vitro antimicrobial activity studies showed that the formulated ointment showed significantly strong (p < 0.05) activity against S. aureus, P. aeruginosa and C. albicans than the formulated gel. Thus, the present study concludes that the formulated ointment and gel are safe and efficient antimicrobial formulations for the topical delivery of the methanolic extract of Samadera indica
    corecore