29 research outputs found

    A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator

    Get PDF
    This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper) and fluid (air) areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that the position where thermal instability takes place correlates well with the region of large K values, which demonstrates that the energy gradient method reveals the physical mechanism of the flow instability. Furthermore, the effects of the fin height, the fin number, and the fin shape on the heat transfer rate are also investigated. It is found that the thermal performance of the fin array is determined by the combined effect of the fin space and fin height. It is also observed that the effect of fin shape on heat transfer is insignificant

    Numerical Study of the Effect of Primary Nozzle Geometry on Supersonic Gas-Solid Jet of Bypass Injected Dry Powder Fire Extinguishing Device

    No full text
    A two-way coupled model between polydisperse particle phases with compressible gases and a density-based coupling implicit solution method, combining the third-order MUSCL with QUICK spatial discretization scheme and the second-order temporal discretization scheme, are constructed based on the discrete-phase model (DPM) and the stochastic wander model (DRWM) in the Eulerian–Lagrangian framework in conjunction with a unitary particulate source (PSIC) approach and the SST k-ω turbulence model. The accuracy of the numerical prediction method is verified using previous supersonic nozzle gas-solid two-phase flow experiments. Numerical simulation of a two-phase jet of dry powder extinguishing agent gas with pilot-type supersonic nozzle was performed to analyze the influence of geometrical parameters, such as the length ratio rL and the area ratio rA of the main nozzle on the two-phase flow field, as well as on the jet performance indexes, such as the particle mean velocity vp,a, velocity inhomogeneity Φvp, particle dispersion Ψp, particle mean acceleration ap,a, etc. By analyzing the parameters, we indicate the requirements for the combination of jet performance metrics for different flame types such as penetrating, spreading, and dispersing

    Detecting the Structural Hole for Social Communities Based on Conductance–Degree

    No full text
    It has been shown that identifying the structural holes in social networks may help people analyze complex networks, which is crucial in community detection, diffusion control, viral marketing, and academic activities. Structural holes bridge different communities and gain access to multiple sources of information flow. In this paper, we devised a structural hole detection algorithm, known as the Conductance–Degree structural hole detection algorithm (CD-SHA), which computes the conductance and degree score of a vertex to identify the structural hole spanners in social networks. Next, we proposed an improved label propagation algorithm based on conductance (C-LPA) to filter the jamming nodes, which have a high conductance and degree score but are not structural holes. Finally, we evaluated the performance of the algorithm on different real-world networks, and we calculated several metrics for both structural holes and communities. The experimental results show that the algorithm can detect the structural holes and communities accurately and efficiently

    Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells

    No full text
    This study investigates the anticancer properties of cannabisin B, purified from hempseed hull, in HepG2 human hepatoblastoma cells. The results indicate that cannabisin B significantly inhibited cell proliferation by inducing autophagic cell death rather than typical apoptosis. Cell viability transiently increased upon the addition of a low concentration of cannabisin B but decreased upon the addition of high concentrations. Cannabisin B-induced changes in cell viability were completely inhibited by pre-treatment with 3-methyladenine (3-MA), indicating that the induction of autophagy by cannabisin B caused cell death. Additionally, cannabisin B induced S phase cell cycle arrest in a dose-dependent manner. Moreover, cannabisin B was found to inhibit survival signaling by blocking the activation of AKT and down-stream targets of the mammalian target of rapamycin (mTOR). These findings suggest that cannabisin B possesses considerable antiproliferative activity and that it may be utilised as a promising chemopreventive agent against hepatoblastoma disease. (C) 2012 Elsevier Ltd. All rights reserved
    corecore