12 research outputs found

    Hydrochemical analysis of groundwater using a tree-based model.

    No full text
    Hydrochemical indices are commonly used to ascertain aquifer characteristics, salinity problems, anthropogenic inputs and resource management, among others. This study was conducted to test the applicability of a binary decision tree model to aquifer evaluation using hydrochemical indices as input. The main advantage of the tree-based model compared to other commonly used statistical procedures such as cluster and factor analyses is the ability to classify groundwater samples with assigned probability and the reduction of a large data set into a few significant variables without creating new factors. We tested the model using data sets collected from headwater springs of the Jordan River, Israel. The model evaluation consisted of several levels of complexity, from simple separation between the calcium-magnesium-bicarbonate water type of karstic aquifers to the more challenging separation of calcium-sodium-bicarbonate water type flowing through perched and regional basaltic aquifers. In all cases, the model assigned measures for goodness of fit in the form of misclassification errors and singled out the most significant variable in the analysis. The model proceeded through a sequence of partitions providing insight into different possible pathways and changing lithology. The model results were extremely useful in constraining the interpretation of geological heterogeneity and constructing a conceptual flow model for a given aquifer. The tree model clearly identified the hydrochemical indices that were excluded from the analysis, thus providing information that can lead to a decrease in the number of routinely analyzed variables and a significant reduction in laboratory cost

    An experimental and numerical study on flow and transport in a field soil using zero-tension lysimeters and suction plates

    No full text
    Zero-tension lysimeters are widely applied to study the fate of chemicals in the subsurface environment. However, conditions in lysimeters differ from the field situation, because local saturation is required at the lower boundary to collect leachate. The objective was to characterize the influence of the lower boundary on the flow and transport behaviour of bromide observed in six 1.2-m-long lysimeters and in the field by 30 suction plates installed at 1.2-m depth, which were operated with a time-variable suction equal to the ambient soil water potential. A bromide pulse was applied at the bare surface of a silty soil in autumn 1997 and monitored for 2.5 years. The mean leachate flux was 0.98 mm day−1 for the lysimeters versus 0.66 mm day−1 for the suction plates. The lysimeters had a slightly slower effective mean pore-water velocity, expressed as transport distance per unit of leaching depth, and exhibited more solute spreading than the suction plates. Numerical simulations revealed that the amount of water collected with the suction plates was sensitive to the hydraulic conductivity of the plates. The spatial variability in hydraulic properties in the model explained the observed variability in cumulative leachate, at least qualitatively. The arrival time and spreading of the breakthrough curves (BTCs) were well described by the simulations in the lysimeters, but were underestimated in the suction plates. Preferential flow through macropores, which is not an effective carrier for bromide, might be the reason for this discrepancy. Molecular diffusion contributed significantly to solute spreading and enhanced lateral mixing. Both the experiments and the simulations revealed that the dispersivity derived from BTCs is significantly influenced by the observation method and experimental conditions

    Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation

    No full text
    Soil solution was obtained from potted rhizosphere or non-rhizosphere soils by water displacement or soil centrifugation. The pH of the displaced solutions was lower than that of bulk soils when solutions were obtained from non-rhizosphere soil, although it increased as plants grew. This increase probably reflected true changes in rhizosphere pH, generated by the uptake by plants of NO3-N. In contrast, the pH of soil centrifugates was usually close to that of the bulk soils, implying that buffering by colloids had occurred during sampling. Concentrations of elements in solutions from non-rhizosphere soil were similar for both methods when soils were incubated at ambient pCO(2). However, when non-rhizosphere soils were incubated at elevated pCO(2), displacement solutions had lower pH values, and much larger concentrations of elements, compared to soil centrifugates. Comparison of mass flow of elements versus actual plant uptake showed that Ca and Mg accumulated, while K, Zn and Cd were depleted from the rhizosphere. Displacement solutions showed this accumulation or depletion of the elements more clearly than soil centrifugates. These differences were attributed to the fact that, at constant soil moisture, the rhizosphere developed mainly in larger pores, which were sampled by displacement. With centrifugation, a mixture of pore sizes was sampled, so that rhizosphere solution was only obtained when all of the soil had become rhizosphere. Soil centrifugates obtained after 22 days of growth also contained higher concentrations of organic carbon than displacement solutions, indicating contamination due to the disruption of roots and/or micro-organisms. We conclude that water displacement is suitable for sampling solution from light to medium textured rhizosphere or non-rhizosphere soils and that soil centrifugation is only of limited suitability
    corecore