120 research outputs found

    Superconducing Alloys with Weak and Strong Scattering: Anderson's Theorem and a Superconductor-Insulator Transition

    Full text link
    We have studied the effects of strong impurity scattering on disordered superconductors beyond the low impurity concentration limit. By applying the full CPA to a superconductiong A-B binary alloy, we calculated the fluctuations of the local order parameters ΔA,ΔB\Delta_{A}, \Delta_{B} and charge densities, nA,nBn_{A}, n_{B} for weak and strong on site disorder. We find that for narrow band alloy s-wav e superconductors the conditions for Anderson's theorem are satisfied in general only for the case of particle-hole symmetry. In this case it is satisfied regardless whether we are in the weak or strong scattering regimes. Interestingly, we find that strong scattering leads to band splitting and in this regime for any band filling we have a critical concentration where a superconductor-insulator quantum phase transition occurs at T=0.Comment: 28 pages, 13 figure

    Pulsive feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a non-symmetric potential

    Full text link
    We examine a strange chaotic attractor and its unstable periodic orbits in case of one degree of freedom nonlinear oscillator with non symmetric potential. We propose an efficient method of chaos control stabilizing these orbits by a pulsive feedback technique. Discrete set of pulses enable us to transfer the system from one periodic state to another.Comment: 11 pages, 4 figure

    Estimation of a Noise Level Using Coarse-Grained Entropy of Experimental Time Series of Internal Pressure in a Combustion Engine

    Full text link
    We report our results on non-periodic experimental time series of pressure in a single cylinder spark ignition engine. The experiments were performed for different levels of loading. We estimate the noise level in internal pressure calculating the coarse-grained entropy from variations of maximal pressures in successive cycles. The results show that the dynamics of the combustion is a nonlinear multidimensional process mediated by noise. Our results show that so defined level of noise in internal pressure is not monotonous function of loading.Comment: 12 pages, 6 figure

    s-wave Superconductivity Phase Diagram in the Inhomogeneous Two-Dimensional Attractive Hubbard Model

    Full text link
    We study s-wave superconductivity in the two-dimensional square lattice attractive Hubbard Hamiltonian for various inhomogeneous patterns of interacting sites. Using the Bogoliubov-de Gennes (BdG) mean field approximation, we obtain the phase diagram for inhomogeneous patterns in which the on-site attractive interaction U_i between the electrons takes on two values, U_i=0 and -U/(1-f) (with f the concentration of non-interacting sites) as a function of average electron occupation per site n, and study the evolution of the phase diagram as f varies. In certain regions of the phase diagram, inhomogeneity results in a larger zero temperature average pairing amplitude (order parameter) and also a higher superconducting (SC) critical temperature T_c, relative to a uniform system with the same mean interaction strength (U_i=-U on all sites). These effects are observed for stripes, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. The phase diagrams also include regions where superconductivity is obliterated due to the formation of various charge ordered phases. The enhancement of T_{c} due to inhomogeneity is robust as long as the electron doping per site n is less than twice the fraction of interacting sites [2(1-f)] regardless of the pattern. We also show that for certain inhomogeneous patterns, when n = 2(1-f), increasing temperature can work against the stability of existing charge ordered phases for large f and as a result, enhance T_{c}.Comment: 16 pages, 11 figure
    • …
    corecore