52 research outputs found

    Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution

    Full text link
    Quantitative roughness and microstructural analysis of as-deposited Al films, 0.1–1.0 ÎŒm thick, were performed by atomic force microscopy (AFM), one-dimensional power spectral density analysis (1DPSD), transmission electron microscopy, and x-ray pole figure methods. The variation of grain size (d) with thickness (h) in the columnar grained film was d∝h0.9.d∝h0.9. The initial crystallographic texture was nearly random, with a strong Al (111) fiber texture evolving by ≈0.2 ÎŒm in deposited thickness. AFM imaging revealed a surface structure with hillocks, grains, and grain boundary grooves, and periodic within-grain ridges extending over entire grains. The root-mean-square surface height variation (RRMS)(RRMS) initially decreased during deposition but increased as RRMS∝h0.55RRMS∝h0.55 from 0.3 to 1.0 ÎŒm thickness. The 1DPSD analysis revealed three spatially resolved regimes of roughness evolution; a frequency independent regime at low frequency attributed to hillock growth, an intermediate frequency self-similar regime attributed to grains and grain boundary grooves, and a high frequency self-similar regime attributed to within-grain ridges. Two characteristic dimensions (CD) were defined at the inverse frequencies of transition between each 1DPSD roughness regime. CDICDI at high frequency was identified as the peak-to-peak ridge spacing which remained independent of film thickness. The ridge spacing is proposed to represent the upper limit of an effective surface diffusion length (λ0)(λ0) due to the effects of surface diffusion and flux shadowing. The CDIICDII at lower frequency was identified as the grain size which increased with thickness. The evolution and interactions of roughness and microstructural features are discussed in terms of surface diffusion, grain boundary motion, and flux shadowing mechanisms. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70172/2/JAPIAU-85-2-876-1.pd

    Superconducting fluctuations and characteristic time scales in amorphous WSi

    Full text link
    We study magnitudes and temperature dependences of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon induced hotspot in two dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin, and Maki-Thompson superconducting fluctuation alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short lifetime Cooper pairs needs to be considered. The time scale {\tau}_i of inelastic scattering is ascribed to a combination of electron-electron ({\tau}_(e-e)) and electron-phonon ({\tau}_(e-ph)) interaction times, and a characteristic electron-fluctuation time ({\tau}_(e-fl)), which makes it possible to extract their magnitudes and temperature dependences from the measured {\tau}_i. The ratio of phonon-electron ({\tau}_(ph-e)) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large {\tau}_(e-ph)/{\tau}_(ph-e) and {\tau}_(e-ph)/{\tau}_(e-e) ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials

    Tomography of photon-number resolving continuous-output detectors

    Full text link
    We report a comprehensive approach to analysing continuous-output photon detectors. We employ principal component analysis to maximise the information extracted, followed by a novel noise-tolerant parameterised approach to the tomography of PNRDs. We further propose a measure for rigorously quantifying a detector's photon-number-resolving capability. Our approach applies to all detectors with continuous-output signals. We illustrate our methods by applying them to experimental data obtained from a transition-edge sensor (TES) detector.Comment: 5 pages, 3 figures, also includes supplementary informatio

    Temporal multimode storage of entangled photon pairs

    Full text link
    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization entangled pairs from parametric down conversion and mapping one photon of each pair onto a rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method useful for the characterisation of multiplexed quantum memories
    • 

    corecore