22 research outputs found

    Pertumbuhan Padi Varietas Ciherang Setelah Diinokulasi dengan Azospirillum Mutan Multifungsi

    Get PDF
    Modern agriculture is very closely related to the application of fertilizer to induce plants grow. The application of bio-fertilizers is expected to reduce the negative impact of chemical fertilizers. The purpose of this study was to determine the effect of multi-functional Azospirillum N2 fixation, P solubility and IAA production on the growth of Ciherang rice in pot experiment in greenhouse BB Biogen. The experiment treatment were 3 types of inoculation (non-inoculation, inoculation using wildtype Aj Bandung 6.4.1.2 and the mutant isolate of AJM 3.7.1.14 ), and 4 levels of fertilizer application (non-fertilization, a quarter dose, a half dose, and the real dose of fertilization on rice in lowland). The Azospirillum isolates were used wildtype isolate Aj Bandung 6.4.1.2 and mutant isolate AJM 3.7.1.14 that was isolated and mutated using ethyl methanesulfonate (EMS) in BB Biogen. Seeds of Ciherang rice were inoculated using Azospirillum at cell density 106 cell/ml in different seedling tray. After 14 days, the seedlings were transferred to planting pots which consist of 3 plants per pot. Parameters observed were plant height, number of tillers, number of panicles per hill, wet and dry weight of panicles per hill, weight of 100 seeds, N and P content of the stover. The results showed that both wild-Azospirillum and mutant inoculum had no effect on the vegetative growth of Ciherang, but showed significant effect on the number of panicle per hill, grain weight per hill and dry weight of seeds per panicle. The use of Azospirillum and N fertilizer combination affected the growth and rice yields, also reduced chemical fertilizer application

    INHIBITION OF THE GROWTH OF TOLERANT YEAST Saccharomyces cerevisiae STRAIN I136 BY A MIXTURE OF SYNTHETIC INHIBITORS

    Get PDF
    Biomass from lignocellulosic wastes is a potential source for biobased products.  However, one of the constraints in utilization of biomass hydrolysate is the presence of inhibitors. Therefore, the use of inhibitor-tolerant microorganisms in the fermentation is required. The study aimed to investigate the effect of a mixture of inhibitors on the growth of Saccharomyces cerevisiae strain I136 grown in medium containing synthetic inhibitors (acetic acid, formic acid, furfural, 5-hydroxymethyl furfural/5-HMF, and levulinic acid) in four different concentrations with a mixture of carbon sources, glucose  (50 g.l-1) and xylose (50 g.l-1) at 30oC. The parameters related to growth and fermentation products were observed. Results showed that the strain was able to grow in media containing natural inhibitors (BSL medium) with µmax of 0.020/h. Higher level of synthetic inhibitors prolonged the lag phase, decreased the cell biomass and ethanol production, and specific growth rate. The strain could detoxify furfural and 5-HMF and produced the highest ethanol (Y(p/s) of 0.32 g.g-1) when grown in BSL. Glucose was utilized as its level decreased in a result of increase in cell biomass, in contrast to xylose which was not consumed. The highest cell biomass was produced in YNB with Y (x/s) value of 0.25 g.g-1. The strain produced acetic acid as a dominant side product and could convert furfural into a less toxic compound, hydroxyl furfural. This robust tolerant strain provides basic information on resistance mechanism and would be useful for bio-based cell factory using lignocellulosic materials.

    Pertumbuhan Padi Varietas Ciherang Setelah Diinokulasi dengan Azospirillum Mutan Multifungsi

    Get PDF
    Modern agriculture is very closely related to the application of fertilizer to induce plants grow. The application of bio-fertilizers is expected to reduce the negative impact of chemical fertilizers. The purpose of this study was to determine the effect of multi-functional Azospirillum N2 fixation, P solubility and IAA production on the growth of Ciherang rice in pot experiment in greenhouse BB Biogen. The experiment treatment were 3 types of inoculation (non-inoculation, inoculation using wildtype Aj Bandung 6.4.1.2 and the mutant isolate of AJM 3.7.1.14 ), and 4 levels of fertilizer application (non-fertilization, a quarter dose, a half dose, and the real dose of fertilization on rice in lowland). The Azospirillum isolates were used wildtype isolate Aj Bandung 6.4.1.2 and mutant isolate AJM 3.7.1.14 that was isolated and mutated using ethyl methanesulfonate (EMS) in BB Biogen. Seeds of Ciherang rice were inoculated using Azospirillum at cell density 106 cell/ml in different seedling tray. After 14 days, the seedlings were transferred to planting pots which consist of 3 plants per pot. Parameters observed were plant height, number of tillers, number of panicles per hill, wet and dry weight of panicles per hill, weight of 100 seeds, N and P content of the stover. The results showed that both wild-Azospirillum and mutant inoculum had no effect on the vegetative growth of Ciherang, but showed significant effect on the number of panicle per hill, grain weight per hill and dry weight of seeds per panicle. The use of Azospirillum and N fertilizer combination affected the growth and rice yields, also reduced chemical fertilizer application

    GROWTH IMPROVEMENT OF TOMATO WITH THE APPLICATION OF BACTERIAL ISOLATES PRODUCING INDOLE ACETIC ACID (IAA) AND PHOSPHATE SOLUBILIZER

    Get PDF
    Soil bacteria have important roles in biogeochemical cycle for soil fertility and have been manipulated for ecologically-friendly crop production.  The search for beneficial association between microbes and plants for promoting growth and health should be studied for tomato growth improvement. The study aimed to  evaluate 19 microbial isolates which produced indole acetic acid (IAA) affecting growth and development of tomato (Palupi variety), and  molecularly identify the most effective isolates in improving tomato growth based on 16s rDNA sequences. The experiment was conducted in pots using a complete randomized design with three replications. The parameters observed included plant height, plant dry weight, root length, root dry weight, and fruit fresh weight.  The isolates that significantly improved tomato growth were molecularly identified using 16s rRNA sequence. The phenotypic properties such as IAA content and phosphate solubilizing index (PI) of the superior isolates were determined. Results showed that the application of bacterial isolates on tomato significantly increased plant dry weight and fruit yield. From 19 isolates tested, Aj 3.7.1.14 significantly increased plant dry weight, root length, and fruit yield. This isolate produced IAA of about 14.77 ppm and PI of 1.86.  Molecular analysis on Aj 3.7.1.14 demonstrated that the isolate had 89% similarity to Pseudomonas fragi. The identified P. fragi was found to be the most effective isolate for improving tomato growth and fruit yield. Another isolate, Bacillus amyloliquefaciens was found to promote root length, root dry weight, and fruit yield. These isolates are potential to be further investigated for field trial

    Uji Ketahanan Galur-galur Kentang Transgenik Hasil Transformasi Dengan Gen Rb Terhadap Penyakit Hawar Daun (Phytophthora Infestans) Di Kp Pasirsarongge, Cianjur

    Full text link
    Resistance test strains of transgenic potatoes transformed with RB gene to late blight (Phytophthora infestan) in KP Pasirsarongge, Cianjur. Potato late blight caused by Phytophthora infestans (P. infestans) (Mönt.) de Barry continues to be one of the most important crop diseases of all time. Genetic engineering of potato using RB gene for resistant plant to this disease is the most effective and environmental friendly to prevent widespread of late blight. This research aims to perform resistance of transgenic potato lines containing RB gene to lateblight (P. infestans) in Pasirsarongge, Cianjur field trial station. The first generation of transgenic lines were planted on polybag containing soil:manures using randomized complete block design. Tested plant inoculation was done naturaly from inoculum source from border row (Granola) that has been planted at one month before. The symptom was observed at one month after planting and damage scoring was done every three days for five times. Twenty two transgenic lines of tested plant showed various resistance respond to late blight (P. infestans) attack. Three transgenic lines showed highly resistance to late blight (P. infestans) were lines 11, 24, and 25, one transgenic line has resistant level was line 6

    Penentuan Alergenisitas Protein Gen RB Pada Kentang Produk Rekayasa Genetika Berdasarkan Studi Bioinformatika

    Full text link
    Genetically modified products (GMP) of Katahdin potato event SP951 containing RB gene resistant to late blight diseasescaused by Phytophtora infestans has been developed in the USA. This Katahdin SP951 potato has been crossed with localvarieties Atlantic and Granola for its development in Indonesia. In the release process, the GMP potato should be tested forenvironmental and food safety. One of the food safety assessment needs to be done by determining allergenicity of RB proteinwhether it is potential as allergen. This research aims to translate the RB gene sequence into RB protein sequence andinvestigate the potential RB protein as an allergen through bioinformatic studies. This study was performed based on thealignment with available protein allergens from available database websites. The predicted RB protein obtained from 2,913amino acids RB gene was a 971 amino acids length protein with ATG as a start codon and TAA as a stop codon. Bioinformaticsstudies of RB protein were performed using www.allergenonline.com, consisted of three searches, i.e. full-length search byFASTA, 80 amino acids search by FASTA, and 8 amino acid exact matches. For full-length alignment search, there are threeallergen proteins similar with RB protein sequence with the percentage identity of <35%, while for alignment with 80 aminoacids and 8 amino acids did not show similarity with any allergen protein in the database. It can be concluded that RB proteindid not have any potential as an allergen, as according to Codex Alimentarius guidelines for full-length alignment search, onlyprotein with identity greater than >50% indicating possible cross reactivity with protein allergen

    Agrobacterium Tumefaciens-mediated In-planta Transformation of Indonesian Maize Using Pig121hm-cs Plasmid Containing Nptii and Hpt Genes

    Full text link
    Maize (Zea mays L.) productivity in Indonesia is challenged to be increased using genetic engineering. Recent advances in Agrobacterium tumefaciens-mediated in-planta transforma-tion makes it possible to transform maize with low cost, and simple method. This study aimed to confirm pIG121Hm-Cs plasmid in A. tumefaciens, and to estimate the efficiency level of A. tumefaciens-mediated in-planta transformation of Indonesian maize by using pIG121Hm-Cs plasmid containing nptII and hpt genes. A series of studies were conducted including confirmation of gene construct of pIG121Hm-Cs plasmid in A. tumefaciens, transformation of four maize lines through A. tumefaciens-mediated in-planta technique, acclimatization of transformant plants and molecular analysis of selected plants using polymerase chain reaction (PCR). The pIG121Hm-Cs plasmid was confirmed via PCR analysis using specific primers of nptII and hpt genes and resulted 700 bp and 500 bp for fragments of nptII and hpt, respectively. After selection, acclimatization and molecular analysis steps, the efficiency levels of transformation of four maize lines were low, ranging from 3.8% to 12.8%. The level of transformation efficiency of ST-27 line was the highest accounting for 12.8% of 45 planted embryos on selection medium based on PCR analysis using specific primer for nptII gene. Overall, A. tumefaciens-mediated in planta transformation on maize floral pistil in this study proved to be successful and rapid. Therefore, this enhanced transformation method will be beneficial for Indonesian maize genetic engineering

    Klon-klon Kentang Transgenik Hasil Persilangan Terseleksi Tahan Terhadap Penyakit Hawar Daun Phytophthora Infestans Tanpa Penyemprotan Fungisida Di Empat Lapangan Uji Terbatas

    Full text link
    The use of resistant varieties is an appropriate alternative in controlling the late blight, a major diseases on potato, caused by the fungus Phytophthora infestans. The development of late blight resistant potato was done through hybridization between non-transgenic Atlantic or Granola with RB transgenic Katahdin SP904 and SP951. The hybrid clones which have been positively contained the RB gene were evaluated for the resistance to P. infestans in four Confined Field Trials (CFTs) i.e. Pasir Sarongge (2008), Lembang (2009-2010), Pangalengan (2010-2011) and Banjarnegara (2011-2012). There are twelve selected hybrid clones which were resistant to P. infestans both in each location of CFT or in four locations were obtained. These clones consist of five clones from crosses of Atlantic and trangenic Katahdin SP951 (B35, B169, B163, B11, B162) and seven clones from crosses of Granola and transgenic Katahdin SP951 (D76, D12, D25, D48, D38, D37, D15). The selected hybrid clones showed resistance to P. infestans until 14 to 18 days after infection or about 40 to 45 days after planting, in the absence of fungicide spraying. The hybrid clones had a resistance score varied from 7,65 to 8,23 and were significantly different from the parents Atlantic and Granola, with a resistance score of 3,6 and 3,45, respectively. This was also supported by AUDPC values, which showed that AUDPC of the hybrid clones were in the range between Atlantic or Granola and transgewnic Katahdin SP951. This indicate that the resistance level of the hybrid clones is in the range between susceptible and resistant check. The resistant hybrid clones are valuable genetic resources for late blight resistance breeding programs, particularly in reducing the frequency of fungicide applications
    corecore