34 research outputs found

    Deformation Response and Life of Metallic Composites

    Get PDF
    The project was initially funded for one year (for 100,764)toinvestigatethepotentialofparticulatereinforcedmetalsforaeropropulsionapplicationsandtogeneratefatigueresultsthatquantifythemeanstresseffectforatitaniumalloymatrixmaterial(TIMETAL21S).Theprojectwascontinuedforasecondyear(for100,764) to investigate the potential of particulate reinforced metals for aeropropulsion applications and to generate fatigue results that quantify the mean stress effect for a titanium alloy matrix material (TIMETAL 21S). The project was continued for a second year (for 85,000) to more closely investigate cyclic deformation, especially ratcheting, of the titanium alloy matrix at elevated temperature. Equipment was purchased (for 19,000)tomaketheexperimentalprogramfeasible;thisequipmentincludedanextensometercalibratorandamulti−channelsignalconditioningamplifier.Theprojectwascontinuedforathirdyear(19,000) to make the experimental program feasible; this equipment included an extensometer calibrator and a multi-channel signal conditioning amplifier. The project was continued for a third year (50,000) to conduct cyclic relaxation experiments aimed at validating the elastic-viscoelastic-viscoplastic model that NASA GRC had developed for the titanium alloy. Finally, a one-year no cost extension was granted to enable continued analysis of the experimental results and model comparisons

    A Fully Coupled Model for Actuation of Higher Order Modes of Lamb Waves

    Get PDF
    Lamb waves have proven to be a valuable tool for structural health monitoring (SHM) of plate-like structures susceptible to degradation. It is well-known that the multi-modal propagation characteristics provide both challenges and opportunities. Piezoelectric transducers are widely used in SHM applications because of their low cost, small profile and strong electromechanical coupling. Properly designing a piezoelectric transducer to excite a particular mode is of great importance to successful SHM practice. The mode tuning capability of piezoelectric transducers has been studied both theoretically and experimentally in the literature for exciting A0 and S0 modes. However, the tuning characteristics of higher order Lamb waves have been studied far less. Also, the transducer is usually modeled separately from the waveguide and their coupling is typically through the in-plane surface tractions. This assumption may induce inaccuracy if the dynamics of actuator are not negligible. The presence of the transducer can also interact with the waves being generated or received, especially if the transducer footprint is substantial. Additionally, the driving circuit is not usually included in the current actuator-waveguide model and thus the power of excited waves cannot be evaluated. In this work, a fully coupled finite element analysis model created for general Lamb wave excitation using piezoelectric transducers is developed. The model comprises three components, electrical driving circuit, piezoelectric element and linear elastic waveguide. The design of the piezoelectric transducer, i.e. width and thickness, for higher order Lamb wave mode excitation is performed for both aluminum and CFRP plates. The design is optimized for both mode tuning capability and power delivery. Experiments are carried out to verify the design

    Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics

    Get PDF
    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification

    Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    Get PDF
    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements

    Investigation of Anomalous Behavior in Metallic-Based Materials Under Compressive Loading

    Get PDF
    An anomalous material response has been observed under the action of applied compressive loads in fibrous SiC/Ti (both Ti-6242 and Ti-15-3 alloys) and the monolithic nickel-base alloy IN-718 in the aged condition. The observed behavior is an increase, rather than a decrease, in the instantaneous Young's modulus with increasing load. This increase is small, but can be significant in yield surface determination tests, where an equivalent offset strain on the order of 10 micron(1 x 10(exp -6) m/m) is being used. Stiffening has been quantified by calculating offset strains from the linear elastic loading line. The offset strains associated with stiffening during compressive loading are positive and of the same order as the target offset strains in yield surface determination tests. At this time we do not have a reasonable explanation for this response nor can we identify a deformation mechanism that might cause it. On the other hand, we are not convinced that it is an artifact of the experimental procedure because a number of issues have been identified and seemingly ruled out. In fact, stiffening appears to be temperature dependent, since it decreases as the temperature increases

    Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C

    Get PDF
    An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers

    Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    Get PDF
    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements

    Quantitative Verification of Thin-Film PVDF Transducer Array Performance up to 60 °C

    Get PDF
    Thin-film PVDF (polyvinylidene fluoride) transducers are appealing as light weight, durable, and flexible sensors for structural health monitoring applications in aircraft structures. However, due to the relatively low Curie temperature of PVDF, there are concerns that its performance will drop below unacceptable levels during high temperature conditions. To verify acceptable performance in these environmental operating conditions (EOC), temperature history data was collected in which tests were carried out between 23-60 °C. For these tests, the PVDF sensor was tested along with a PZT (lead zirconate titanate) wafer sensor as a benchmark. The damage feature is the decrease in peak amplitude from the presence of a through-hole defect. The waveguide for the tests was a 1 mm thick aluminum plate and the measurement was completed using the pitch-catch method. The performance of each sensor was evaluated using Receiver Operating Characteristic (ROC) curves and the relative quality of the sensors to detect the defect was evaluated by calculating the Area Under the Curve (AUC) of the ROC curves. These ROCs can require a significant amount of time and resources to produce, but it is possible to use baseline signals at various EOCs to construct synthetic datasets, which reduce the time and resources required. This was attempted and the resulting ROCs were compared to ROCs constructed using actual datasets at the specific EOCs. The comparison of the two ROCs and their respective AUCs were completed to evaluate the effectiveness of this data synthesis approach for future use with this inspection methodology

    Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C

    Get PDF
    An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers

    Verification of Experimental Techniques for Flow Surface Determination

    Get PDF
    The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al)
    corecore