32 research outputs found

    Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review

    Get PDF
    Background The prognosis, specifically the case fatality and duration, of untreated tuberculosis is important as many patients are not correctly diagnosed and therefore receive inadequate or no treatment. Furthermore, duration and case fatality of tuberculosis are key parameters in interpreting epidemiological data. Methodology and Principal Findings To estimate the duration and case fatality of untreated pulmonary tuberculosis in HIV negative patients we reviewed studies from the pre-chemotherapy era. Untreated smear-positive tuberculosis among HIV negative individuals has a 10-year case fatality variously reported between 53% and 86%, with a weighted mean of 70%. Ten-year case fatality of culture-positive smear-negative tuberculosis was nowhere reported directly but can be indirectly estimated to be approximately 20%. The duration of tuberculosis from onset to cure or death is approximately 3 years and appears to be similar for smear-positive and smear-negative tuberculosis. Conclusions Current models of untreated tuberculosis that assume a total duration of 2 years until self-cure or death underestimate the duration of disease by about one year, but their case fatality estimates of 70% for smear-positive and 20% for culture-positive smear-negative tuberculosis appear to be satisfactory

    Destabilization of Oil-in-Water Emulsions Stabilized by Non-ionic Surfactants: Effect of Particle Hydrophilicity

    No full text
    We investigate the use of particle hydrophilicity as a tool for emulsion destabilization in Triton-X-100-stabilized hexadecane-in-water emulsions. The hydrophilicity of the particles added to the aqueous phase was found to have a pronounced effect on the stability of the emulsion. Specifically, the addition of hydrophilic fumed silica particles to the aqueous phase resulted in coarsening of the emulsion droplets, with droplet flocculation observed at higher particle concentrations. On the other hand, when partially hydrophobic fumed silica particles were added to the aqueous phase, coarsening of the emulsion droplets was observed at low particle concentrations and phase separation of oil and water was observed at higher particle concentrations. Surface tension and interfacial tension measurements showed significant depletion of the surfactant from the aqueous phase in the presence of the partially hydrophobic particles. The observed changes in the stability of the emulsion and the depletion of the surfactant can be rationalized in terms of changes in the adsorption behavior of the surfactant molecules, from one dominated by hydrogen bonding on hydrophilic particles to one dominated by hydrophobic interactions on partially hydrophobic particles. Our findings also provide, for the first time, an in-depth understanding of antagonistic (destabilizing) effects in mixtures of partially hydrophobic particles and a non-ionic surfactant (Triton X-100) in water
    corecore