2 research outputs found

    Association of Maternal and Fetal Single-Nucleotide Polymorphisms in Metalloproteinase (MMP1, MMP2, MMP3, and MMP9) Genes with Preeclampsia

    Get PDF
    Background. Metalloproteinases (MMPs) play a pivotal role during the process of trophoblast invasion and placentation. The appearance of five functional single-nucleotide polymorphisms (SNP) in the genes of the metalloproteinases most commonly implicated in the implantation process may influence the development of preeclampsia. Methods. Blood samples were collected from 86 mothers and 86 children after preeclampsia and 85 mothers and 85 children with uncomplicated pregnancies. The distribution of genotypes for −1607 1G/2G MMP1, −735 C/T MMP2, −1306 C/T MMP2, −1171 5A/6A MMP3, and −1562C/T MMP9 polymorphisms was determined by RFLP-PCR. Results. The occurrence of 1G/1G MMP1 or 5A/5A MMP3 genotype in the mother or 1G/1G MMP1 or 5A/6A MMP3 genotype in the child is associated with preeclampsia development. Moreover, simultaneous maternal and fetal 1G/1G homozygosity increases the risk of preeclampsia development 2.39-fold and the set of maternal 5A/5A and fetal 5A/6A MMP3 genotypes by over 4.5 times. No association between the carriage of studied MMP2 or MMP9 polymorphisms and the predisposition to preeclampsia was found. Conclusion. The maternal 1G/1G MMP1 and 5A/5A MMP3 and fetal 1G/1G MMP1 and 5A/6A MMP3 gene polymorphisms may be strong genetic markers of preeclampsia, occurring either individually or together

    Placental Expression of NEMO Protein in Normal Pregnancy and Preeclampsia

    No full text
    Background. Preeclamptic pregnancies often present an intensified inflammatory state associated with the nuclear activity of NFκB. NEMO is an essential regulator of nuclear factor kappa B (NFκB) in cytoplasmic and nuclear cellular compartments. The aim of the present study is to examine the level and localization of the NEMO protein in preeclamptic and nonpreeclamptic placentas. Methods. The study includes 97 preeclamptic cases and 88 controls. NEMO distribution was analyzed immunohistochemically. Its localization in the nuclear and cytoplasmic fractions, as well as in total homogenates of placental samples, was studied by western blot and ELISA. Results. The western blot and ELISA results indicate a significant difference in NEMO concentration in the total and nuclear fractions between preeclamptic and control samples (p<0.01 and p<0.001, respectively). In the cytoplasmic complement, similar levels of NEMO were found in preeclamptic and control placentas. In addition, immunohistochemical staining revealed that the NEMO protein is mainly localized in the syncytiotrophoblast layer, with controls demonstrating a stronger reaction with NEMO antibodies. This study also shows that the placental level of NEMO depends on the sex of the fetus. Conclusions. The depletion of the NEMO protein in the cellular compartments of placental samples may activate one of the molecular pathways influencing the development of preeclampsia, especially in pregnancies with a female fetus. A reduction of the NEMO protein in the nuclear fraction of preeclamptic placentas may intensify the inflammatory state characteristic for preeclampsia and increase the level of apoptosis and necrosis within preeclamptic placentas
    corecore