2 research outputs found

    Bacterial cellulose-based biomaterials on third-degree burns in rats

    Get PDF
    Burns are cutaneous lesions that present  high rate of morbidity and mortality worldwide. In order to innovate the treatment strategies currently applied new biomaterials are being investigated. The aim of the present study was to evaluate the action of bacterial cellulose in both membrane and gel form, in the treatment of third degree burns in rats. For this, 24 Wistar rats were used, divided into three distinct groups. The lesion was performed with the aid of a soldering iron heated at 150 °C pressed on the back of the animal for 10 seconds. Treatment was performed immediately after wound induction, and skin samples were collected on the tenth day post-injury. Statistical analysis was performed using a significance level of 5% (p?0.05). The histological results show differences in the healing process presented by each group. The group that received bacterial cellulose in the membrane format presented the best results, such as discrete inflammatory infiltrate and better morphological quality of the tissue, characterizing an advanced stage of the healing process, also proven in the collagen quantitative analysis. On the other hand, the group that received the cellulose gel showed characteristics of an inflammatory phase with the presence of evident ulcerations, which corresponds to a delay in the healing process even when compared to CG alone. Thus, it was concluded that before the biomaterials tested cellulose membrane in the format presented more favorable results both in terms of environmental protection as a contribution to an adequate tissue recovery.

    Sesquiterpenos produzidos pelo fungo endofítico Phomopsis cassiae com atividade antifúngica e inibidora de acetilcolinesterase

    No full text
    SESQUITERPENES PRODUCED BY ENDOPHYTIC FUNGUS Phomopsis cassiae WITH ANTIFUNGAL AND ACETYLCHOLINESTERASE INHIBITION ACTIVITIES. Two new diastereoisomeric cadinanes sesquiterpenes 3,9-dihydroxycalamenene (1-2), along with the known 3-hydroxycalamen-8-one (3) and aristelegone-A (4), were isolated from ethyl acetate extract of Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures, including relative stereochemistry, were determined on the basis of detailed interpretation of 2D NMR spectra and comparison with related known compounds. Compounds 1-4 displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as inhibition of acetylcholinesterase
    corecore