1,799 research outputs found

    Analysis of energy- and time-dependence of supernova shock effects on neutrino crossing probabilities

    Get PDF
    It has recently been realized that supernova neutrino signals may be affected by shock propagation over a time interval of a few seconds after bounce. In the standard three-neutrino oscillation scenario, such effects crucially depend on the neutrino level crossing probability P_H in the 1-3 sector. By using a simplified parametrization of the time-dependent supernova radial density profile, we explicitly show that simple analytical expressions for P_H accurately reproduce the phase-averaged results of numerical calculations in the relevant parameter space. Such expressions are then used to study the structure of P_H as a function of energy and time, with particular attention to cases involving multiple crossing along the shock profile. Illustrative applications are given in terms of positron spectra generated by supernova electron antineutrinos through inverse beta decay.Comment: Major changes both in the text and in the figures in order to include the effect of a step-like shock front density profile; final version to appear in Physical Review

    Addendum to: Model-dependent and -independent implications of the first Sudbury Neutrino Observatory results

    Get PDF
    In the light of recent experimental and theoretical improvements, we review our previous model-independent comparison [hep-ph/0106247] of the Super-Kamiokande (SK) and Sudbury Neutrino Observatory (SNO) solar neutrino event rates, including updated values for the ``equalized'' SK datum and for the reference Standard Solar Model (SSM) B neutrino flux. We find that the joint SK+SNO evidence for active neutrino flavor transitions is confirmed at the level of 3.3 standard deviations, independently of possible transitions to sterile states. Barring sterile neutrinos, we estimate the 3-sigma range for the 8^8B neutrino flux (normalized to SSM) as f_B=0.96 +0.54-0.55. Accordingly, the 3-sigma range for the energy-averaged nu_e survival probability is found to be = 0.31 +0.55-0.16, independently of the functional form of P_ee. An increase of the reference nu_e + d --> p + p + e cross section by ~3%, as suggested by recent theoretical calculations, would slightly shift the central values of f_B and of to ~1.00 and ~0.29, respectively, and would strengthen the model-independent evidence for nu_e transitions into active states at the level of ~3.6 sigma.Comment: 6 pages + 2 figures. Addendum to hep-ph/010624

    Zenith distribution of atmospheric neutrino events and electron neutrino mixing

    Get PDF
    Assuming atmospheric neutrino oscillations with dominant nu_munu_tau transitions, we discuss how subdominant nu_e mixing (within the Chooz reactor bounds) can alter the zenith distributions of neutrino-induced electrons and muons. We isolate two peculiar distortion effects, one mainly related to nu_e mixing in vacuum and the other to matter oscillations, that may be sufficiently large to be detected by the SuperKamiokande atmospheric nu experiment. These effects (absent for pure two-flavor nu_munu_tau transitions) do not vanish in the limit of energy-averaged oscillations.Comment: 6 pages, RevTeX, no figure

    Probing supernova shock waves and neutrino flavor transitions in next-generation water-Cherenkov detectors

    Get PDF
    Several current projects aim at building a large water-Cherenkov detector, with a fiducial volume about 20 times larger than in the current Super-Kamiokande experiment. These projects include the Underground nucleon decay and Neutrino Observatory (UNO) in the Henderson Mine (Colorado), the Hyper-Kamiokande (HK) detector in the Tochibora Mine (Japan), and the MEgaton class PHYSics (MEMPHYS) detector in the Frejus site (Europe). We study the physics potential of a reference next-generation detector (0.4 Mton of fiducial mass) in providing information on supernova neutrino flavor transitions with unprecedented statistics. After discussing the ingredients of our calculations, we compute neutrino event rates from inverse beta decay (νˉep→e+n\bar\nu_e p\to e^+ n ), elastic scattering on electrons, and scattering on oxygen, with emphasis on their time spectra, which may encode combined information on neutrino oscillation parameters and on supernova forward (and possibly reverse) shock waves. In particular, we show that an appropriate ratio of low-to-high energy events can faithfully monitor the time evolution of the neutrino crossing probability along the shock-wave profile. We also discuss some background issues related to the detection of supernova relic neutrinos, with and without the addition of gadolinium.Comment: Revised version (27 pages, 13 eps figures), to appear in JCAP. Includes revised numerical estimates and figures. In particular: calculations of inverse beta decay event rates improved by using the differential cross section by Vissani and Strumia (astro-ph/0302055); supernova relic neutrino flux calculations updated by using recent GALEX Mission data (astro-ph/0411424) on the star formation rate (SFR). References added. Conclusions unchange

    Neutrino masses and mixings: Status of known and unknown 3ν3\nu parameters

    Get PDF
    Within the standard 3nu mass-mixing framework, we present an up-to-date global analysis of neutrino oscillation data (as of January 2016), including the latest available results from experiments with atmospheric neutrinos (Super-Kamiokande and IceCube DeepCore), at accelerators (first T2K anti-nu and NOvA nu runs in both appearance and disappearance mode), and at short-baseline reactors (Daya Bay and RENO far/near spectral ratios), as well as a reanalysis of older KamLAND data in the light of the "bump" feature recently observed in reactor spectra. We discuss improved constraints on the five known oscillation parameters (delta m^2, |Delta m^2|, sin^2theta_12, sin^2theta_13, sin^2theta_23), and the status of the three remaining unknown parameters: the mass hierarchy, the theta_23 octant, and the possible CP-violating phase delta. With respect to previous global fits, we find that the reanalysis of KamLAND data induces a slight decrease of both delta m^2 and sin^2theta_12, while the latest accelerator and atmospheric data induce a slight increase of |Delta m^2|. Concerning the unknown parameters, we confirm the previous intriguing preference for negative values of sin(delta) [with best-fit values around sin(delta) ~ -0.9], but we find no statistically significant indication about the theta_23 octant or the mass hierarchy (normal or inverted). Assuming an alternative (so-called LEM) analysis of NOvA data, some delta ranges can be excluded at >3 sigma, and the normal mass hierarchy appears to be slightly favored at 90% C.L. We also describe in detail the covariances of selected pairs of oscillation parameters. Finally, we briefly discuss the implications of the above results on the three non-oscillation observables sensitive to the (unknown) absolute nu mass scale: the sum of nu masses, the effective nu_e mass, and the effective Majorana mass.Comment: 15 pages, 9 figures, 2 tables. Invited contribution prepared for the Nuclear Physics B Special Issue on "Neutrino Oscillations" celebrating the Nobel Prize in Physics 201

    Atmospheric, Solar, and CHOOZ neutrinos: a global three generation analysis

    Get PDF
    We perform a global three generation analysis of the current solar and atmospheric evidence in favor of neutrino oscillations. We also include the negative results coming from CHOOZ to constrain the nu_e mixing. We study the zones of mass-mixing oscillations parameters compatible with all the data. It is shown that almost pure nu_mu nu_tau oscillations are required to explain the atmospheric neutrino anomaly and almost pure nu_1 nu_2 oscillations to account for the solar neutrino deficit.Comment: 4 pages, talk given at 36th Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, France, 10-17 Mar 200

    Status of three-neutrino oscillation parameters, circa 2013

    Full text link
    The standard three-neutrino (3nu) oscillation framework is being increasingly refined by results coming from different sets of experiments, using neutrinos from solar, atmospheric, accelerator and reactor sources. At present, each of the known oscillation parameters [the two squared mass gaps (delta m^2, Delta m^2) and the three mixing angles (theta_12}, theta_13, theta_23)] is dominantly determined by a single class of experiments. Conversely, the unknown parameters [the mass hierarchy, the theta_23 octant and the CP-violating phase delta] can be currently constrained only through a combined analysis of various (eventually all) classes of experiments. In the light of recent new results coming from reactor and accelerator experiments, and of their interplay with solar and atmospheric data, we update the estimated N-sigma ranges of the known 3nu parameters, and revisit the status of the unknown ones. Concerning the hierarchy, no significant difference emerges between normal and inverted mass ordering. A slight overall preference is found for theta_23 in the first octant and for nonzero CP violation with sin delta < 0; however, for both parameters, such preference exceeds 1 sigma only for normal hierarchy. We also discuss the correlations and stability of the oscillation parameters within different combinations of data sets.Comment: Updated and revised version, accepted for publication in PRD. The analysis includes the latest (March 2014) T2K disappearance data: all the figures and the numerical results have been updated, and parts of the text have been revised accordingl

    Phenomenology of Neutrino Oscillations

    Get PDF
    We review the status of several phenomenological topics of current interest in neutrino oscillations: (i) Solar neutrino oscillations after the first Sudbury Neutrino Observatory measurements, including both model-independent and model-dependent results; (ii) Dominant nu_mu-->nu_tau oscillations of atmospheric and K2K neutrinos, and possible subdominant oscillations induced by either extra states or extra interactions; and (iii) Four-neutrino scenarios embedding the controversial LSND evidence for oscillations.Comment: 9 pages, including 12 figures. Presented at TAUP 2001: Topics in Astroparticle and Underground Physics, Assergi, Italy, 8-12 Sep. 200

    Fourier analysis of real-time, high-statistics solar neutrino observations

    Get PDF
    Solar neutrino oscillations with wavelengths comparable to the Earth-Sun distance provide a viable explanations of the long-standing solar neutrino deficit. They imply a time-dependent modulation of the solar neutrino flux due to the eccentricity of the Earth orbit. Motivated by this testable prediction, we propose a Fourier analysis of the signal observable in real-time, solar neutrino experiments. We give the general expressions of the Fourier coefficients and of their correlated uncertainties in the presence of background. The expressions assume a particularly compact form in the case of two-flavor neutrino oscillations in vacuum. We discuss the sensitivity to the lowest harmonics of the new-generation, high-statistics experiments SuperKamiokande, Sudbury Neutrino Observatory, and Borexino.Comment: 10 pages (RevTeX) + 1 figure (postscript); requires epsfig.st
    • …
    corecore