1,627 research outputs found

    Four-neutrino oscillation solutions of the atmospheric neutrino anomaly

    Get PDF
    In the context of neutrino scenarios characterized by four (three active plus one sterile) neutrino species and by mass spectra with two separated doublets, we analyze solutions to the atmospheric neutrino anomaly which smoothly interpolate between \nu_\mu-->\nu_\tau and \nu_\mu-->\nu_s oscillations. We show that, although the Super-Kamiokande data disfavor the pure \nu_\mu-->\nu_s channel, they do not exclude its occurrence, with sizable amplitude, in addition to the \nu_\mu-->\nu_\tau channel. High energy muon data appear to be crucial in assessing the relative amplitude of active and sterile neutrino oscillations. It is also qualitatively shown that such atmospheric \nu solutions are compatible with analogous solutions to the solar neutrino problem, which involve oscillations of \nu_e in both sterile and active states.Comment: Added references. Accepted for publication in Phys. Rev.

    Global analysis of three-flavor neutrino masses and mixings

    Get PDF
    We present a comprehensive phenomenological analysis of a vast amount of data from neutrino flavor oscillation and non-oscillation searches, performed within the standard scenario with three massive and mixed neutrinos, and with particular attention to subleading effects. The detailed results discussed in this review represent a state-of-the-art, accurate and up-to-date (as of August 2005) estimate of the three-neutrino mass-mixing parameters.Comment: Final version (including a new Appendix), to be published in "Progress in Particle and Nuclear Physics". Higher-resolution pdf file and eps figures can be download from http://www.ba.infn.it/~now2004/PPNP_review

    Supernova neutrinos: Strong coupling effects of weak interactions

    Full text link
    In core-collapse supernovae, neutrinos and antineutrinos are initially subject to significant self-interactions induced by weak neutral currents, which may induce strong-coupling effects on the flavor evolution (collective transitions). The interpretation of the effects is simplified when self-induced collective transitions are decoupled from ordinary matter oscillations, as for the matter density profile that we discuss. In this case, approximate analytical tools can be used (pendulum analogy, swap of energy spectra). For inverted neutrino mass hierarchy, the sequence of effects involves: synchronization, bipolar oscillations, and spectral split. Our simulations shows that the main features of these regimes are not altered when passing from simplified (angle-averaged) treatments to full, multi-angle numerical experiments.Comment: Proceedings of NO-VE 2008, IV International Workshop on "Neutrino Oscillations in Venice" (Venice, Italy, April 15-18, 2008), edited by M. Baldo Ceolin (University of Padova publication, Papergraf Editions, Padova, Italy, 2008), pages 233-24

    Drag Reduction over Dolphin Skin via the Pondermotive Forcing of Vortex Filaments

    Get PDF
    The skin of Tursiops Truncatus is corrugated with small, quasi-periodic ridges running circumferentially about the torso. These ridges extend into the turbulent boundary layer and affect the evolution of coherent structures. The development and evolution of coherent structures over a surface is described by the formation and dynamics of vortex filaments. The dynamics of these filaments over a flat, non-ridged surface is determined analytically, as well as through numerical simulation, and found to agree with the observations of coherent structures in the turbulent boundary layer. The calculation of the linearized dynamics of the vortex filament, successful for the dynamics of a filament over a flat surface, is extended and applied to a vortex filament propagating over a periodically ridged surface. The surface ridges induce a rapid parametric forcing of the vortex filament, and alter the filament dynamics significantly. A consideration of the contribution of vortex filament induced flow to energy transport indicates that the behavior of the filament induced by the ridges can directly reduce surface drag by up to 8%. The size, shape, and distribution of cutaneous ridges for Tursiops Truncatus is found to be optimally configured to affect the filament dynamics and reduce surface drag for swimming velocities consistent with observation.Comment: 71 pages, 27 encapsulated figure

    Analysis of energy- and time-dependence of supernova shock effects on neutrino crossing probabilities

    Get PDF
    It has recently been realized that supernova neutrino signals may be affected by shock propagation over a time interval of a few seconds after bounce. In the standard three-neutrino oscillation scenario, such effects crucially depend on the neutrino level crossing probability P_H in the 1-3 sector. By using a simplified parametrization of the time-dependent supernova radial density profile, we explicitly show that simple analytical expressions for P_H accurately reproduce the phase-averaged results of numerical calculations in the relevant parameter space. Such expressions are then used to study the structure of P_H as a function of energy and time, with particular attention to cases involving multiple crossing along the shock profile. Illustrative applications are given in terms of positron spectra generated by supernova electron antineutrinos through inverse beta decay.Comment: Major changes both in the text and in the figures in order to include the effect of a step-like shock front density profile; final version to appear in Physical Review

    Addendum to: Model-dependent and -independent implications of the first Sudbury Neutrino Observatory results

    Get PDF
    In the light of recent experimental and theoretical improvements, we review our previous model-independent comparison [hep-ph/0106247] of the Super-Kamiokande (SK) and Sudbury Neutrino Observatory (SNO) solar neutrino event rates, including updated values for the ``equalized'' SK datum and for the reference Standard Solar Model (SSM) B neutrino flux. We find that the joint SK+SNO evidence for active neutrino flavor transitions is confirmed at the level of 3.3 standard deviations, independently of possible transitions to sterile states. Barring sterile neutrinos, we estimate the 3-sigma range for the 8^8B neutrino flux (normalized to SSM) as f_B=0.96 +0.54-0.55. Accordingly, the 3-sigma range for the energy-averaged nu_e survival probability is found to be = 0.31 +0.55-0.16, independently of the functional form of P_ee. An increase of the reference nu_e + d --> p + p + e cross section by ~3%, as suggested by recent theoretical calculations, would slightly shift the central values of f_B and of to ~1.00 and ~0.29, respectively, and would strengthen the model-independent evidence for nu_e transitions into active states at the level of ~3.6 sigma.Comment: 6 pages + 2 figures. Addendum to hep-ph/010624
    • …
    corecore