3,321 research outputs found
Inductive Logic Programming in Databases: from Datalog to DL+log
In this paper we address an issue that has been brought to the attention of
the database community with the advent of the Semantic Web, i.e. the issue of
how ontologies (and semantics conveyed by them) can help solving typical
database problems, through a better understanding of KR aspects related to
databases. In particular, we investigate this issue from the ILP perspective by
considering two database problems, (i) the definition of views and (ii) the
definition of constraints, for a database whose schema is represented also by
means of an ontology. Both can be reformulated as ILP problems and can benefit
from the expressive and deductive power of the KR framework DL+log. We
illustrate the application scenarios by means of examples. Keywords: Inductive
Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid
Knowledge Representation and Reasoning Systems. Note: To appear in Theory and
Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables
Global analysis of three-flavor neutrino masses and mixings
We present a comprehensive phenomenological analysis of a vast amount of data
from neutrino flavor oscillation and non-oscillation searches, performed within
the standard scenario with three massive and mixed neutrinos, and with
particular attention to subleading effects. The detailed results discussed in
this review represent a state-of-the-art, accurate and up-to-date (as of August
2005) estimate of the three-neutrino mass-mixing parameters.Comment: Final version (including a new Appendix), to be published in
"Progress in Particle and Nuclear Physics". Higher-resolution pdf file and
eps figures can be download from http://www.ba.infn.it/~now2004/PPNP_review
Supernova neutrinos: Strong coupling effects of weak interactions
In core-collapse supernovae, neutrinos and antineutrinos are initially
subject to significant self-interactions induced by weak neutral currents,
which may induce strong-coupling effects on the flavor evolution (collective
transitions). The interpretation of the effects is simplified when self-induced
collective transitions are decoupled from ordinary matter oscillations, as for
the matter density profile that we discuss. In this case, approximate
analytical tools can be used (pendulum analogy, swap of energy spectra). For
inverted neutrino mass hierarchy, the sequence of effects involves:
synchronization, bipolar oscillations, and spectral split. Our simulations
shows that the main features of these regimes are not altered when passing from
simplified (angle-averaged) treatments to full, multi-angle numerical
experiments.Comment: Proceedings of NO-VE 2008, IV International Workshop on "Neutrino
Oscillations in Venice" (Venice, Italy, April 15-18, 2008), edited by M.
Baldo Ceolin (University of Padova publication, Papergraf Editions, Padova,
Italy, 2008), pages 233-24
Addendum to: Model-dependent and -independent implications of the first Sudbury Neutrino Observatory results
In the light of recent experimental and theoretical improvements, we review
our previous model-independent comparison [hep-ph/0106247] of the
Super-Kamiokande (SK) and Sudbury Neutrino Observatory (SNO) solar neutrino
event rates, including updated values for the ``equalized'' SK datum and for
the reference Standard Solar Model (SSM) B neutrino flux. We find that the
joint SK+SNO evidence for active neutrino flavor transitions is confirmed at
the level of 3.3 standard deviations, independently of possible transitions to
sterile states. Barring sterile neutrinos, we estimate the 3-sigma range for
the B neutrino flux (normalized to SSM) as f_B=0.96 +0.54-0.55.
Accordingly, the 3-sigma range for the energy-averaged nu_e survival
probability is found to be = 0.31 +0.55-0.16, independently of the
functional form of P_ee. An increase of the reference nu_e + d --> p + p + e
cross section by ~3%, as suggested by recent theoretical calculations, would
slightly shift the central values of f_B and of to ~1.00 and ~0.29,
respectively, and would strengthen the model-independent evidence for nu_e
transitions into active states at the level of ~3.6 sigma.Comment: 6 pages + 2 figures. Addendum to hep-ph/010624
- …
