30 research outputs found

    Unsupervised video anomaly detection in UAVs: a new approach based on learning and inference

    Get PDF
    In this paper, an innovative approach to detecting anomalous occurrences in video data without supervision is introduced, leveraging contextual data derived from visual characteristics and effectively addressing the semantic discrepancy that exists between visual information and the interpretation of atypical incidents. Our work incorporates Unmanned Aerial Vehicles (UAVs) to capture video data from a different perspective and to provide a unique set of visual features. Specifically, we put forward a technique for discerning context through scene comprehension, which entails the construction of a spatio-temporal contextual graph to represent various aspects of visual information. These aspects encompass the manifestation of objects, their interrelations within the spatio-temporal domain, and the categorization of the scenes captured by UAVs. To encode context information, we utilize Transformer with message passing for updating the graph's nodes and edges. Furthermore, we have designed a graph-oriented deep Variational Autoencoder (VAE) approach for unsupervised categorization of scenes, enabling the extraction of the spatio-temporal context graph across diverse settings. In conclusion, by utilizing contextual data, we ascertain anomaly scores at the frame-level to identify atypical occurrences. We assessed the efficacy of the suggested approach by employing it on a trio of intricate data collections, specifically, the UCF-Crime, Avenue, and ShanghaiTech datasets, which provided substantial evidence of the method's successful performance

    Seizure and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Encephalomyelitis in a Retrospective Cohort of Chinese Patients

    Get PDF
    Background: Myelin oligodendrocyte glycoprotein (MOG) antibody associated encephalomyelitis is increasingly being considered a distinct disease entity, with seizures and encephalopathy commonly reported. We investigated the clinical features of MOG-IgG positive patients presenting with seizures and/or encephalopathy in a single cohort.Methods: Consecutive patients with suspected idiopathic inflammatory demyelinating diseases were recruited from a tertiary University hospital in Guangdong province, China. Subjects with MOG-IgG seropositivity were analyzed according to whether they presented with or without seizure and/or encephalopathy.Results: Overall, 58 subjects seropositive for MOG-IgG were analyzed, including 23 (40%) subjects presenting with seizures and/or encephalopathy. Meningeal irritation (P = 0.030), fever (P = 0.001), headache (P = 0.001), nausea, and vomiting (P = 0.004) were more commonly found in subjects who had seizures and/or encephalopathy, either at presentation or during the disease course. Nonetheless, there was less optic nerve (4/23, 17.4%, P = 0.003) and spinal cord (6/16, 37.5%, P = 0.037) involvement as compared to subjects without seizures or encephalopathy. Most MOG encephalomyelitis subjects had cortical/subcortical lesions: 65.2% (15/23) in the seizures and/or encephalopathy group and 50.0% (13/26) in the without seizures or encephalopathy group. Cerebrospinal fluid (CSF) leukocytes were elevated in both groups. Subgroup analysis showed that 30% (7/23) MOG-IgG positive subjects with seizures and/or encephalopathy had been misdiagnosed for central nervous system infection on the basis of meningoencephalitis symptoms and elevated CSF leukocytes (P = 0.002).Conclusions: Seizures and encephalopathy are not rare in MOG encephalomyelitis, and are commonly associated with cortical and subcortical brain lesions. MOG-encephalomyelitis often presents with clinical meningoencephalitis symptoms and abnormal CSF findings mimicking central nervous system infection in pediatric and young adult patients

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×1037cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×1071.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Boundedness for Commutators of Bilinear θ-Type Calderón-Zygmund Operators on Nonhomogeneous Metric Measure Spaces

    No full text
    Let (X,d,μ) be a nonhomogeneous metric measure space. In this paper, the boundedness for commutators generated by bilinear θ-type Calderón-Zygmund operators and RBMO(μ) functions on (X,d,μ) is obtained

    Higher Order Commutators of Fractional Integral Operator on the Homogeneous Herz Spaces with Variable Exponent

    No full text
    By decomposing functions, we establish estimates for higher order commutators generated by fractional integral with BMO functions or the Lipschitz functions on the homogeneous Herz spaces with variable exponent. These estimates extend some known results in the literatures

    About spherical functions onSL(2,ℝ)

    No full text
    corecore