52 research outputs found

    Cells of the human intestinal tract mapped across space and time.

    Get PDF
    Funder: Medical Research CouncilThe cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease

    A cell atlas of human thymic development defines T cell repertoire formation.

    Get PDF
    The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development

    Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors.

    Get PDF
    Messenger RNA encodes cellular function and phenotype. In the context of human cancer, it defines the identities of malignant cells and the diversity of tumor tissue. We studied 72,501 single-cell transcriptomes of human renal tumors and normal tissue from fetal, pediatric, and adult kidneys. We matched childhood Wilms tumor with specific fetal cell types, thus providing evidence for the hypothesis that Wilms tumor cells are aberrant fetal cells. In adult renal cell carcinoma, we identified a canonical cancer transcriptome that matched a little-known subtype of proximal convoluted tubular cell. Analyses of the tumor composition defined cancer-associated normal cells and delineated a complex vascular endothelial growth factor (VEGF) signaling circuit. Our findings reveal the precise cellular identities and compositions of human kidney tumors

    Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus

    Get PDF
    Idiopathic congenital nystagmus (ICN) is characterised by involuntary, periodic, predominantly horizontal, oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 ICN singleton cases (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina suggesting a specific role in the control of eye movement and gaze stability

    Implementation of a 9-point stencil in SOLPS-ITER and implications for Alcator C-Mod divertor plasma simulations

    No full text
    The SOLPS-ITER code suite is used worldwide for plasma edge modeling, the interpretation of experiments, as well as for the design of the ITER divertor. The numerical scheme of the plasma solver of the code, B2.5, is based on the assumption of perfectly orthogonal grids in the poloidal plane, aligned with the magnetic field, while in practice grids are often strongly distorted to match divertor target shapes. Neglecting these grid distortion leads to qualitatively and quantitatively incorrect results for fluid neutral simulations, and may affect results in cold (detached) divertors even when using kinetic neutral simulations. In this contribution, we present the first results of a newly implemented 9-point stencil in B2.5 to properly handle misaligned grids. The new scheme is then applied to fluid neutral simulations of a well-diagnosed and previously modeled Alcator C-Mod discharge. Results are compared with the original 5-point scheme neglecting grid distortion effects, as well as with simulations including a full kinetic neutral model. We conclude that the 9-point stencil is essential to correctly model the transport of fluid neutrals on distorted grids, and to capture the effects of divertor closure on the fluid neutral behavior. Keywords: SOLPS-ITER, Divertor modeling, Fluid neutral modeling, Misaligned grids, Alcator C-Mo

    Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification.

    Get PDF
    During brain development, neural stem cells (NSCs) receive on-or-off signals important for regulating their amplification and reaching adequate neuron density. However, how a coordinated regulation of intracellular pathways and genetic programs is achieved has remained elusive. Here, we found that the embryonic (e) CSF contains 10¹² nanoparticles/ml (77 nm diameter), some of which were identified as exosome nanovesicles that contain evolutionarily conserved molecules important for coordinating intracellular pathways. eCSF nanovesicles collected from rodent and human embryos encapsulate protein and microRNA components of the insulin-like growth factor (IGF) signaling pathway. Supplementation of eCSF nanovesicles to a mixed culture containing eNSCs activated the IGF-mammalian target of rapamycin complex 1 (mTORC1) pathway in eNSCs and expanded the pool of proliferative eNSCs. These data show that the eCSF serves as a medium for the distribution of nanovesicles, including exosomes, and the coordinated transfer of evolutionary conserved molecules that regulate eNSC amplification during corticogenesis

    SOLPS-ITER Modeling of the Alcator C-Mod Divertor Plasma

    No full text
    SOLPS-ITER is a new edge code package that will be developed and maintained at the ITER Organization [X. Bonnin et al., Plasma Fusion Res. 11, 1403102 (2016)], in close collaboration with the wider SOLPS community, and will be used to support the design of the ITER divertor [A.S. Kukushkin et al., Fusion Eng. Des. 86, 2865 (2011)]. In this paper, we report on the first application of the code to the modeling of the Alcator C-Mod divertor. With its high density, high magnetic field, and strong ITER-like target shaping, C-Mod is of particular interest to ITER in terms of plasma and neutral parameters in the divertor. We show that with a fluid neutral model, we can qualitatively reproduce the observed particle fluxes to inner and outer targets under partially detached conditions. However, simulated electron temperatures in the divertor are much too low. A number of physics and numerical reasons are proposed to resolve this issue and serve as a guideline for further development of the code.status: publishe
    corecore