26 research outputs found

    Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.

    Get PDF
    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated (2)H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique

    Poly-ADP Ribosyl Polymerase 1 (PARP1) Regulates Influenza A Virus Polymerase

    No full text
    Influenza A viruses (IAV) are evolutionarily successful pathogens, capable of infecting a number of avian and mammalian species and responsible for pandemic and seasonal epidemic disease in humans. To infect new species, IAV typically must overcome a number of species barriers to entry, replication, and egress, even while virus replication is counteracted by antiviral host factors and innate immune mechanisms. A number of host factors have been found to regulate the replication of IAV by interacting with the viral RNA-dependent RNA polymerase (RdRP). The host factor PARP1, a poly-ADP ribosyl polymerase, was required for optimal functions of human, swine, and avian influenza RdRP in human 293T cells. In IAV infection, PARP1 was required for efficient synthesis of viral nucleoprotein (NP) in human lung A549 cells. Intriguingly, pharmacological inhibition of PARP1 enzymatic activity (PARylation) by 4-amino-1,8-naphthalimide led to a 4-fold increase in RdRP activity, and a 2.3-fold increase in virus titer. Exogenous expression of the natural PARylation inhibitor PARG also enhanced RdRP activity. These data suggest a virus-host interaction dynamic where PARP1 protein itself is required, but cellular PARylation has a distinct suppressive modality, on influenza A viral polymerase activity in human cells

    Dynamics of Recent Thymic Emigrants in Young Adult Mice

    No full text
    The peripheral naive T-cell pool is generally thought to consist of a subpopulation of recent thymic emigrants (RTEs) and a subpopulation of mature naive (MN) T cells with different dynamics. Thymus transplantation and adoptive transfer studies in mice have provided contradicting results, with some studies suggesting that RTEs are relatively short-lived cells, while another study suggested that RTEs have a survival advantage. We here estimate the death rates of RTE and MN T cells by performing both thymus transplantations and deuterium labeling experiments in mice of at least 12 weeks old, an age at which the size of the T-cell pool has stabilized. For CD4(+) T cells, we found the total loss rate from the RTE compartment (by death and maturation) to be fourfold faster than that of MN T cells. We estimate the death rate of CD4(+) RTE to be 0.046 per day, which is threefold faster than the total loss rate from the MN T-cell compartment. For CD8(+) T cells, we found no evidence for kinetic differences between RTE and MN T cells. Thus, our data support the notion that in young adult mice, CD4(+) RTE are relatively short-lived cells within the naive CD4(+) T-cell pool

    Dynamics of recent thymic emigrants in young adult mice

    No full text
    The peripheral naive T-cell pool is generally thought to consist of a subpopulation of recent thymic emigrants (RTEs) and a subpopulation of mature naive (MN) T cells with different dynamics. Thymus transplantation and adoptive transfer studies in mice have provided contradicting results, with some studies suggesting that RTEs are relatively short-lived cells, while another study suggested that RTEs have a survival advantage. We here estimate the death rates of RTE and MN T cells by performing both thymus transplantations and deuterium labeling experiments in mice of at least 12 weeks old, an age at which the size of the T-cell pool has stabilized. For CD4 ++ T cells, we found the total loss rate from the RTE compartment (by death and maturation) to be fourfold faster than that of MN T cells. We estimate the death rate of CD4+ RTE to be 0.046 per day, which is threefold faster than the total loss rate from the MN T-cell compartment. For CD8+ T cells, we found no evidence for kinetic differences between RTE and MN T cells. Thus, our data support the notion that in young adult mice, CD4+ RTE are relatively short-lived cells within the naive CD4++ T-cell pool

    Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover

    No full text
    In healthy humans, lymphocyte populations are maintained at a relatively constant size throughout life, reflecting a balance between lymphocyte production and loss. Given the profound immunological changes that occur during healthy aging, including a significant decline in T-cell production by the thymus, lymphocyte maintenance in the elderly is generally thought to require homeostatic alterations in lymphocyte dynamics. Surprisingly, using in vivo 2H2O labeling, we find similar dynamics of most lymphocyte subsets between young adult and elderly healthy individuals. As the contribution of thymic output to T-cell production is only minor from young adulthood onward, compensatory increases in peripheral T-cell division rates are not required to maintain the T-cell pool, despite a tenfold decline in thymic output. These fundamental insights will aid the interpretation of further research into aging and clinical conditions related to disturbed lymphocyte dynamics

    Dynamics of Recent Thymic Emigrants in Young Adult Mice

    No full text
    The peripheral naive T-cell pool is generally thought to consist of a subpopulation of recent thymic emigrants (RTEs) and a subpopulation of mature naive (MN) T cells with different dynamics. Thymus transplantation and adoptive transfer studies in mice have provided contradicting results, with some studies suggesting that RTEs are relatively short-lived cells, while another study suggested that RTEs have a survival advantage. We here estimate the death rates of RTE and MN T cells by performing both thymus transplantations and deuterium labeling experiments in mice of at least 12 weeks old, an age at which the size of the T-cell pool has stabilized. For CD4+ T cells, we found the total loss rate from the RTE compartment (by death and maturation) to be fourfold faster than that of MN T cells. We estimate the death rate of CD4+ RTE to be 0.046 per day, which is threefold faster than the total loss rate from the MN T-cell compartment. For CD8+ T cells, we found no evidence for kinetic differences between RTE and MN T cells. Thus, our data support the notion that in young adult mice, CD4+ RTE are relatively short-lived cells within the naive CD4+ T-cell pool

    Dynamics of Recent Thymic Emigrants in Young Adult Mice

    Get PDF
    The peripheral naive T-cell pool is generally thought to consist of a subpopulation of recent thymic emigrants (RTEs) and a subpopulation of mature naive (MN) T cells with different dynamics. Thymus transplantation and adoptive transfer studies in mice have provided contradicting results, with some studies suggesting that RTEs are relatively short-lived cells, while another study suggested that RTEs have a survival advantage. We here estimate the death rates of RTE and MN T cells by performing both thymus transplantations and deuterium labeling experiments in mice of at least 12 weeks old, an age at which the size of the T-cell pool has stabilized. For CD4(+) T cells, we found the total loss rate from the RTE compartment (by death and maturation) to be fourfold faster than that of MN T cells. We estimate the death rate of CD4(+) RTE to be 0.046 per day, which is threefold faster than the total loss rate from the MN T-cell compartment. For CD8(+) T cells, we found no evidence for kinetic differences between RTE and MN T cells. Thus, our data support the notion that in young adult mice, CD4(+) RTE are relatively short-lived cells within the naive CD4(+) T-cell pool

    Impact of aging, cytomegalovirus infection, and long-term treatment for human immunodeficiency virus on CD8+ T-Cell subsets

    No full text
    Both healthy aging and human immunodeficiency virus (HIV) infection lead to a progressive decline in naive CD8+ T-cell numbers and expansion of the CD8+ T-cell memory and effector compartments. HIV infection is therefore often considered a condition of premature aging. Total CD8+ T-cell numbers of HIV-infected individuals typically stay increased even after long-term (LT) combination antiretroviral treatment (cART), which is associated with an increased risk of non-AIDS morbidity and mortality. The causes of these persistent changes in the CD8+ T-cell pool remain debated. Here, we studied the impact of age, CMV infection, and LT successful cART on absolute cell numbers in different CD8+ T-cell subsets. While naïve CD8+ T-cell numbers in cART-treated individuals (N = 38) increased to healthy levels, central memory (CM), effector memory (EM), and effector CD8+ T-cell numbers remained higher than in (unselected) age-matched healthy controls (N = 107). Longitudinal analysis in a subset of patients showed that cART did result in a loss of memory CD8+ T-cells, mainly during the first year of cART, after which memory cell numbers remained relatively stable. As CMV infection is known to increase CD8+ T-cell numbers in healthy individuals, we studied whether any of the persistent changes in the CD8+ T-cell pools of cART-treated patients could be a direct reflection of the high CMV prevalence among HIV-infected individuals. We found that EM and effector CD8+ T-cell numbers in CMV+ healthy individuals (N = 87) were significantly higher than in CMV- (N = 170) healthy individuals. As a result, EM and effector CD8+ T-cell numbers in successfully cART-treated HIV-infected individuals did not deviate significantly from those of age-matched CMV+ healthy controls (N = 39). By contrast, CM T-cell numbers were quite similar in CMV+ and CMV- healthy individuals across all ages. The LT expansion of the CM CD8+ T-cell pool in cART-treated individuals could thus not be attributed directly to CMV and was also not related to residual HIV RNA or to the presence of HIV-specific CM T-cells. It remains to be investigated why the CM CD8+ T-cell subset shows seemingly irreversible changes despite years of effective treatment

    Evaluation of the effect of storage condition on cell extraction and flow cytometric analysis from intestinal biopsies

    No full text
    Background: Flow cytometric (FC) analysis of intestinal tissue biopsies requires prompt cell isolation and processing to prevent cell death and generate valid data. We examined the effect of storage conditions prior to cell isolation and FC on viable cell yield and the proportions of immune cell phenotypes from intestinal biopsies. Methods: Biopsies (N = 224) from inflamed or non-inflamed ileal and/or colonic tissue from three patients with Crohn's disease were processed and analyzed immediately in duplicate, or stored under different conditions. Cells were isolated and stained for specific markers, followed by FC. Results: Decreased mean live CD45+ cell counts were observed after storage of biopsies at −80 °C dimethyl sulfoxide (DMSO)/citrate buffer compared with immediate processing (1794.3 vs. 19,672.7; p = 0.006]). A non-significant decrease in CD45+ live cell count occurred after storage at −20 °C in DMSO/citrate buffer and cell yield was adequate for subsequent analysis. CD3+ cell proportions were significantly lower after storage at 4 °C in complete medium for 48 h compared with immediate analysis. Mean CD14+ cell proportions were significantly higher after storage of biopsies at −80 °C in DMSO/citrate buffer compared with immediate analysis (2.61% vs. 1.31%, p = 0.007). CD4+, CD8+ and CD4+/CD8+ cell proportions were unaffected by storage condition. Conclusion: Storage of intestinal tissue biopsies at −20 °C in DMSO/citrate buffer for up to 48 h resulted in sufficient viable cell yield for FC analysis without affecting subsequent marker-positive cell proportions. These findings support the potential shipping and storage of intestinal biopsies for centralized FC analysis in multicenter clinical trials
    corecore