2 research outputs found

    Neural firing in the prefrontal cortex during alcohol intake in alcohol preferring β€˜P’ vs. Wistar rats

    Get PDF
    BACKGROUND: Neural activity within the prefrontal cortex (PFC) is altered by alcohol and alcohol-associated stimuli and is mediated by genetic susceptibility to alcoholism. However, very little is known about how genetic risk of excessive drinking might mediate neural firing in the PFC during alcohol consumption. METHODS: To determine how genetic risk influences alcohol seeking, intake, and neural activity, a Pavlovian alcohol consumption task was used-the 2-Way Cued Access Protocol (2CAP). Alcohol-preferring "P" rats and relatives of their (heterogeneous) founding Wistar population were used for these studies. After acquisition of 2CAP, extinction of responding for alcohol was evaluated by substituting water for alcohol. Following these experiments, in vivo electrophysiological recordings were obtained during 2CAP from the PFC in a separate cohort of Wistar and P rats implanted with moveable tetrode microdrives. RESULTS: P and Wistar rats increased daily alcohol seeking and intake with P rats consuming roughly twice as much alcohol as Wistar. Both rat populations decreased seeking behavior during extinction. However, P rats displayed persistent increases in seeking after controlling for intake versus Wistar. Higher firing rates (FRs) were observed in P rats prior to 2CAP and throughout alcohol and water consumption compared with Wistars that were matched for alcohol-drinking history. Differences in FR were driven, in part, by a larger percentage of neurons in P rats versus Wistars that increased FR compared with those that decreased, or did not change. CONCLUSIONS: These data provide additional evidence of increased alcohol consumption and persistent alcohol seeking in P versus Wistar rats. Differences in PFC neural firing observed in P rats prior to drinking could be heritable and/or related to an enhanced response to alcohol-associated contextual cues. FR differences observed during alcohol drinking might be related to an augmented sensitivity of PFC neurons to orally consumed alcohol

    Encoding of the Intent to Drink Alcohol by the Prefrontal Cortex Is Blunted in Rats with a Family History of Excessive Drinking

    Get PDF
    The prefrontal cortex (PFC) plays a central role in guiding decision making, and its function is altered by alcohol use and an individual's innate risk for excessive alcohol drinking. The primary goal of this work was to determine how neural activity in the PFC guides the decision to drink. Towards this goal, the within-session changes in neural activity were measured from medial PFC (mPFC) of rats performing a drinking procedure that allowed them to consume or abstain from alcohol in a self-paced manner. Recordings were obtained from rats that either lacked or expressed an innate risk for excessive alcohol intake, Wistar or alcohol-preferring (P) rats, respectively. Wistar rats exhibited patterns of neural activity consistent with the intention to drink or abstain from drinking, whereas these patterns were blunted or absent in P rats. Collectively, these data indicate that neural activity patterns in mPFC associated with the intention to drink alcohol are influenced by innate risk for excessive alcohol drinking. This observation may indicate a lack of control over the decision to drink by this otherwise well-validated supervisory brain region
    corecore