18 research outputs found

    Archaeosome Adjuvant Overcomes Tolerance to Tumor-Associated Melanoma Antigens Inducing Protective CD8+ T Cell Responses

    Get PDF
    Vesicles comprised of the ether glycerolipids of the archaeon Methanobrevibacter smithii (archaeosomes) are potent adjuvants for evoking CD8+ T cell responses. We therefore explored the ability of archaeosomes to overcome immunologic tolerance to self-antigens. Priming and boosting of mice with archaeosome-antigen evoked comparable CD8+ T cell response and tumor protection to an alternate boosting strategy utilizing live bacterial vectors for antigen delivery. Vaccination with melanoma antigenic peptides TRP181-189 and Gp10025-33 delivered in archaeosomes resulted in IFN-γ producing antigen-specific CD8+ T cells with strong cytolytic capability and protection against subcutaneous B16 melanoma. Targeting responses against multiple antigens afforded prolonged median survival against melanoma challenge. Entrapment of multiple peptides within the same vesicle or admixed formulations were both effective at evoking CD8+ T cells against each antigen. Melanoma-antigen archaeosome formulations also afforded therapeutic protection against established B16 tumors when combined with depletion of T-regulatory cells. Overall, we demonstrate that archaeosome adjuvants constitute an effective choice for formulating cancer vaccines

    Safety and biodistribution of sulfated archaeal glycolipid archaeosomes as vaccine adjuvants

    Get PDF
    Archaeosomes are liposomes comprised of ether lipids derived from various archaea which, as adjuvants, can induce robust, long-lasting humoral and cell-mediated immune responses to entrapped antigens. Traditional total polar lipid (TPL) archaeosome formulations are relatively complex and semi-synthetic archaeosomes involve many synthetic steps to arrive at the final desired glycolipid composition. We have developed a novel archaeosome formulation comprising a sulfated saccharide group covalently linked to the free sn-1 hydroxyl backbone of an archaeal core lipid (sulfated S-lactosylarchaeol, SLA) mixed with uncharged glycolipid (lactosylarchaeol, LA). This new class of adjuvants can be easily synthesized and retains strong immunostimulatory activity for induction of cell-mediated immunity following systemic immunization. Herein, we demonstrate the safety of SLA/LA archaeosomes following intramuscular injection to mice and evaluate the immunogenicity, in vivo distribution and cellular uptake of antigen (ovalbumin) encapsulated into SLA/LA archaeosomes. Overall, we have found that semi-synthetic sulfated glycolipid archaeosomes are a safe and effective novel class of adjuvants capable of inducing strong antigen-specific immune responses in mice and protection against subsequent B16 melanoma tumor challenge. A key step in their mechanism of action appears to be the recruitment of immune cells to the injection site and the subsequent trafficking of antigen to local draining lymph nodes. A better understanding of the safety and mechanism of action of novel adjuvants such as archaeosomes is a key step in their advancement into clinical use

    Archaeal glycolipid adjuvanted vaccines induce strong influenza-specific immune responses through direct immunization in young and aged mice or through passive maternal immunization.

    Get PDF
    Vaccine induced responses are often weaker in those individuals most susceptible to infection, namely the very young and the elderly, highlighting the need for safe and effective vaccine adjuvants. Herein we evaluated different archaeosome formulations as an adjuvant to the H1N1 influenza hemagglutinin protein and compared immune responses (anti-HA IgG and hemagglutination inhibition assay titers) as well as protection to an influenza A virus (strain A/Puerto Rico/8/1934 H1N1) homologous challenge to those generated using a squalene-based oil-in-water nano-emulsion, AddaVax™ in a murine model. The impact of age (young adult vs aged) on vaccine induced immune responses as well as the protection in pups due to the transfer of maternal antibodies was measured. Overall, we show that archaeal lipid based adjuvants can induce potent anti-HA responses in young and aged mice that can also be passed from vaccinated mothers to pups. Furthermore, young and aged mice immunized with archaeal lipid adjuvants as well as pups from immunized mothers were protected from challenge with influenza. In addition, we show that a simple admixed archaeosome formulation composed of a single sulfated glycolipid namely sulfated lactosylarchaeol (SLA; 6′-sulfate-β-D-Galp-(1,4)-β-D-Glcp-(1,1)-archaeol) can give equal or better protection compared to AddaVax™ or the traditional antigen-encapsulated archaeosome formulations

    Sulfated archaeal glycolipid archaeosomes as a safe and effective vaccine adjuvant for induction of cell-mediated immunity

    No full text
    Archaeosomes are liposomal vesicles composed of ether glycerolipids unique to the domain of Archaea. Unlike conventional ester-linked liposomes, archaeosomes exhibit high stability and possess strong adjuvant and immunostimulatory properties making them an attractive vaccine delivery vehicle. Traditionally comprised of total polar lipids (TPL) or semi-synthetic phospho-glycerolipids of ether-linked isoprenoid phytanyl cores with varied glycol- and amino-head groups, archaeosomes can induce robust and long-lasting humoral and cell-mediated immune responses against antigenic cargo and provide protection in murine models of infectious disease and cancer. However, traditional TPL archaeosome formulations are relatively complex comprising several lipid species. Semi-synthetic archaeosomes tested previously contain a combination of several phospho-glycolipids (negative and neutral charged) to produce a stable, uniform-sized liposome formulation. Moreover, they involve many synthetic steps to arrive at the final desired glycolipid composition. Herein, we present a novel adjuvant formulation comprising a sulfated saccharide group covalently linked to the free sn-1 hydroxyl backbone of an archaeal core lipid (sulfated S-lactosylarchaeol, SLA). SLA individually or mixed with uncharged glyolipid (lactosylarchaeol, LA) constituted efficacious carrier vesicles for entrapped antigens (ovalbumin or melanoma associated tyrosinase-related protein 2 [TRP-2]) and induction of strong cell-mediated responses in mice and protection against subsequent B16 melanoma tumor challenge. Thus, semi-synthetic sulfated glycolipid archaeosomes represent a new class of adjuvants that will potentially ease manufacturing and scale-up, while retaining immunostimulatory activity

    Safety of archaeosome adjuvants evaluated in a mouse model

    No full text
    Archaeosomes, liposomes prepared from the polar ether lipids extracted from Archaea, demonstrate great potential as immunomodulating carriers of soluble antigens, promoting humoral and cell mediated immunity in the vaccinated host. The safety of unilamellar archaeosomes prepared from the total polar lipids (TPL) of Halobacterium salinarum, Methanobrevibacter smithii or Thermoplasma acidophilum was evaluated in female BALB/c mice using ovalbumin (OVA) as the model antigen. Groups of 6\u20138 mice were injected (0.1 mL final volume) subcutaneously at 0 and 21 days, with phosphate buffered saline (PBS), 11 \ub5g OVA in PBS, 1.25 mg of antigen-free archaeosomes in PBS (ca 70 mg/kg body wt), or PBS containing 11\u201320 \ub5g OVA encapsulated in 1.25 mg archaeosomes. Animals were monitored daily for injection site reactions, body weight, temperature and clinical signs of adverse reactions. Sera were collected on days 1, 2, 22, and 39 for analyses of creatine phosphokinase. Mice were sacrificed on 39 d, sera were collected for biochemical analyses, and major organs (liver, spleen, kidneys, heart, lungs) were weighed and examined macroscopically. There were no indications of adverse reactions or toxicity associated with any of the archaeosome adjuvants. None of the antigen-free archaeosomes elicited significant anti lipid antibodies when subcutaneously injected (1 mg each at 0, 1, 2, and 4 weeks) in mice, although anti H. salinarum lipid antibodies were detected. These anti lipid antibodies cross-reacted with the TPL of T. acidophilum archaeosomes but not with the TPL of M. smithii archaeosomes nor with lipids of ester liposomes made from l-\u3b1-dimyristoylphosphatidylcholine (DMPC), l-\u3b1-dimyristoylphosphatidylglycerol (DMPG), and cholesterol (CHOL). In vitro hemolysis assay on mouse erythrocytes indicated no lysis with M. smithii or T. acidophilum archaeosomes at up to 2.5 mg/mL concentration. At this concentration, H. salinarum archaeosomes and DMPC/DMPG/CHOL ester liposomes caused about 2% and 4% hemolysis, respectively. Based on this mouse model evaluation, archaeosomes are well-tolerated and appear relatively safe for potential vaccine applications.NRC publication: Ye

    In vitro assessment of archaeosome stability for developing oral delivery systems

    No full text
    The in vitro stability of archaeosomes made from the total polar lipids of Methanosarcina mazei, Methanobacterium espanolae or Thermoplasma acidophilum, was evaluated under conditions encountered in the human gastrointestinal tract. At acidic pH, multilamellar vesicles (MLV) prepared from T. acidophilum lipids were the most stable, releasing approximately 80, 20, 10 and 5% of encapsulated 14C-sucrose at pH 1.5, 2.0, 2.5 and 6.2, respectively, after 90 min at 37 degrees C. Archaeosomes from M. mazei lipids were the least stable. For each type of total polar lipid, unilamellar vesicles (ULV) were less stable than the corresponding MLV vesicles. Pancreatic lipase had relatively minor effect on the stability of archaeosomes made from either of the three types of total polar lipids, causing the release of 12-27% of the encapsulated 5(6)-carboxyfluorescein (CF) from ULV and MLV after 90 min at 37 degrees C. In simulated human bile at pH 6.2, MLV from M. mazei total polar lipids lost 100% of the encapsulated CF after 90 min at 37 degrees C, whereas those from the polar lipids of M. espanolae or T. acidophilum lost approximately 85% of the marker. Pancreatic lipase and simulated human bile had no synergistic effect on the release of carboxyfluorescein from ULV or MLV prepared from any of the total polar lipids. After 90 min in the combined presence of these two stressors at pH 6.2, the leakage of fluorescein conjugated bovine serum albumin from MLV prepared from T. acidophilum lipids was similar to that of CF, and 13% of the initially present vesicles appeared to be intact. These results indicate that archaeosomes show stability properties indicative of potential advantages in developing applications as an oral delivery system.NRC publication: Ye

    Characterization of Systemic and Mucosal Humoral Immune Responses to an Adjuvanted Intranasal SARS-CoV-2 Protein Subunit Vaccine Candidate in Mice

    No full text
    Continuous viral evolution of SARS-CoV-2 has resulted in variants capable of immune evasion, vaccine breakthrough infections and increased transmissibility. New vaccines that invoke mucosal immunity may provide a solution to reducing virus transmission. Here, we evaluated the immunogenicity of intranasally administered subunit protein vaccines composed of a stabilized SARS-CoV-2 spike trimer or the receptor binding domain (RBD) adjuvanted with either cholera toxin (CT) or an archaeal lipid mucosal adjuvant (AMVAD). We show robust induction of immunoglobulin (Ig) G and IgA responses in plasma, nasal wash and bronchoalveolar lavage in mice only when adjuvant is used in the vaccine formulation. While the AMVAD adjuvant was more effective at inducing systemic antibodies against the RBD antigen than CT, CT was generally more effective at inducing overall higher IgA and IgG titers against the spike antigen in both systemic and mucosal compartments. Furthermore, vaccination with adjuvanted spike led to superior mucosal IgA responses than with the RBD antigen and produced broadly targeting neutralizing plasma antibodies against ancestral, Delta and Omicron variants in vitro; whereas adjuvanted RBD elicited a narrower antibody response with neutralizing activity only against ancestral and Delta variants. Our study demonstrates that intranasal administration of an adjuvanted protein subunit vaccine in immunologically naïve mice induced both systemic and mucosal neutralizing antibody responses that were most effective at neutralizing SARS-CoV-2 variants when the trimeric spike was used as an antigen compared to RBD

    An Archaeosome-Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Significantly Enhances Protection from Murine Melanoma

    No full text
    Archaeosomes constitute archaeal lipid vesicle vaccine adjuvants that evoke a strong CD8+ T cell response to antigenic cargo. Therapeutic treatment of murine B16-ovalbumin (B16-OVA) melanoma with archaeosome-OVA eliminates small subcutaneous solid tumors; however, they eventually resurge despite an increased frequency of circulating and tumor infiltrating OVA-CD8+ T cells. Herein, a number of different approaches were evaluated to improve responses, including dose number, interval, and the combination of vaccine with checkpoint inhibitors. Firstly, we found that tumor protection could not be enhanced by repetitive and/or delayed boosting to maximize the CD8+ T cell number and/or phenotype. The in vivo cytotoxicity of vaccine-induced OVA-CD8+ T cells was impaired in tumor-bearing mice. Additionally, tumor-infiltrating OVA-CD8+ T cells had an increased expression of programmed cell death protein-1 (PD-1) compared to other organ compartments, suggesting impaired function. Combination therapy of tumor-bearing mice with the vaccine archaeosome-OVA, and α-CTLA-4 administered concurrently as well as α-PD-1 and an α-PD-L1 antibody administered starting 9 days after tumor challenge given on a Q3Dx4 schedule (days 9, 12, 15 and 18), significantly enhanced survival. Following multi-combination therapy ~70% of mice had rapid tumor recession, with no detectable tumor mass after >80 days in comparison to a median survival of 17–22 days for untreated or experimental groups receiving single therapies. Overall, archaeosomes offer a powerful platform for delivering cancer antigens when used in combination with checkpoint inhibitor immunotherapies
    corecore