198 research outputs found

    Quantum frequency conversion and strong coupling of photonic modes using four-wave mixing in integrated microresonators

    Full text link
    Single photon-level quantum frequency conversion has recently been demonstrated using silicon nitride microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of quantum states of light across wide frequency ranges at sub-watt pump powers. Using a quantum-mechanical Hamiltonian formalism, we present a detailed theoretical analysis of the conversion dynamics in these systems, and show that they are capable of converting single- and multi-photon quantum states. Analytic formulas for the conversion efficiency, spectral conversion probability density, and pump power requirements are derived which are in good agreement with previous theoretical and experimental results. We show that with only modest improvement to the state of the art, efficiencies exceeding 95% are achievable using less than 100 mW of pump power. At the critical driving strength that yields maximum conversion efficiency, the spectral conversion probability density is shown to exhibit a flat-topped peak, indicating a range of insensitivity to the spectrum of a single photon input. Two alternate theoretical approaches are presented to study the conversion dynamics: a dressed mode approach that yields a better intuitive picture of the conversion process, and a study of the temporal dynamics of the participating modes in the resonator, which uncovers a regime of Rabi-like coherent oscillations of single photons between two different frequency modes. This oscillatory regime arises from the strong coupling of distinct frequency modes mediated by coherent pumps.Comment: 14 pages, 7 figure

    Scalable squeezed light source for continuous variable quantum sampling

    Full text link
    We propose a novel squeezed light source capable of meeting the stringent requirements of continuous variable quantum sampling. Using the effective χ2\chi_2 interaction induced by a strong driving beam in the presence of the χ3\chi_3 response in an integrated microresonator, our device is compatible with established nanophotonic fabrication platforms. With typical realistic parameters, squeezed states with a mean photon number of 10 or higher can be generated in a single consistent temporal mode at repetition rates in excess of 100MHz. Over 15dB of squeezing is achievable in existing ultra-low loss platforms

    Stimulated Emission Tomography: Beyond Polarization

    Full text link
    In this work we demonstrate the use of stimulated emission tomography to characterize a hyper-entangled state generated by spontaneous parametric down-conversion in a CW-pumped source. In particular, we consider the generation of hyper-entangled states consisting of photon pairs entangled in polarisation and path. These results extend the capability of stimulated emission tomography beyond the polarisation degree of freedom, and demonstrate the use of this technique to study states in higher dimension Hilbert spaces

    Tailoring second-harmonic generation in birefringent poled fiber via Twist

    No full text
    We predict theoretically and demonstrate experimentally the ability to generate and control the strengths of various second-harmonic signals in birefringent poled fiber. This is done by simply twisting the fiber

    Nonlinear Coupling of Linearly Uncoupled Resonators

    Full text link
    We demonstrate a system composed of two resonators that are coupled solely through a nonlinear interaction, and where the linear properties of each resonator can be controlled locally. We show that this class of dynamical systems has peculiar properties with important consequences for the study of classical and quantum nonlinear optical phenomena. As an example we discuss the case of dual-pump spontaneous four-wave mixing.Comment: 4 Figure

    Truly unentangled photon pairs without spectral filtering

    Full text link
    We demonstrate that an integrated silicon microring resonator is capable of efficiently producing photon pairs that are completely unentangled; such pairs are a key component of heralded single photon sources. A dual-channel interferometric coupling scheme can be used to independently tune the quality factors associated with the pump and signal and idler modes, yielding a biphoton wavefunction with Schmidt number arbitrarily close to unity. This will permit the generation of heralded single photon states with unit purity.Comment: 5 pages, 3 figure

    Integrated sources of photon quantum states based on nonlinear optics

    Get PDF
    The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies. These include quantum communications, computation, imaging, microscopy and many other novel technologies that are constantly being proposed. However, approaches to generating parallel multiple, customisable bi- and multi-entangled quantum bits (qubits) on a chip are still in the early stages of development. Here, we review recent advances in the realisation of integrated sources of photonic quantum states, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory platforms as well as with chip-scale semiconductor technology. These new and exciting platforms hold the promise of compact, low-cost, scalable and practical implementations of sources for the generation and manipulation of complex quantum optical states on a chip, which will play a major role in bringing quantum technologies out of the laboratory and into the real world

    Broadband polarization-entanglement in a poled fiber

    No full text
    Broadband polarization-entanglement over 100 nm is demonstrated in a poled fiber phase-matched for type-II downconversion in the 1.5µm telecom-band. Two-photon interference and Hong-Ou-Mandel interference are used experimentally to confirm the broadband nature of the entanglement

    Characterizing an Entangled-Photon Source with Classical Detectors and Measurements

    Full text link
    Quantum state tomography (QST) is a universal tool for the design and optimization of entangled-photon sources. It typically requires single-photon detectors and coincidence measurements. Recently, it was suggested that the information provided by the QST of photon pairs generated by spontaneous parametric down-conversion could be obtained by exploiting the stimulated version of this process, namely difference frequency generation. In this protocol, so-called "stimulated-emission tomography" (SET), a seed field is injected along with the pump pulse, and the resulting stimulated emission is measured. Since the intensity of the stimulated field can be several orders of magnitude larger than the intensity of the corresponding spontaneous emission, measurements can be made with simple classical detectors. Here, we experimentally demonstrate SET and compare it with QST. We show that one can accurately reconstruct the polarization density matrix, and predict the purity and concurrence of the polarization state of photon pairs without performing any single-photon measurements.Comment: 5+3 pages, 5 figures, 1 tabl
    corecore