13 research outputs found

    Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    Full text link
    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make color astronomical images. And in many ways it has led to a new philosophy towards how to create them. A practical guide is presented on how to generate astronomical images from research data with powerful image-processing programs. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired color scheme, creating an immense parameter space to be explored using an iterative approach. Several examples of image creation are presented. A philosophy is also presented on how to use color and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements which affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image intrinsically cannot show, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image, to scientists and to the public.Comment: 104 pages, 38 figures, submitted to A

    HST/ACS Narrowband Imaging of the Kepler Supernova Remnant

    Get PDF
    We present narrowband images of the Kepler supernova remnant obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. The images, with an angular resolution of 0.05" reveal the structure of the emitting gas in unprecedented detail. Radiative and nonradiative shocks are found in close proximity, unresolvable in gro~md-based spectra, indicating that the pre-shock medium is highly clumped. The ionization structure, traced by differences in the [0 111] to [N 11] flux ratio, varies on subarcsecond scales. The variation is due to 110th differences in shock velocity as well as gradients in the evolutionary stage of the shocks. A pro~llinent complex of knots protruding beyond the boundary of the ren~nallt in the northwest is found to consist of bright radiative knots, collected by arcuate nonradiative filaments. Based on the coincidence of the optical emission with a bright isolated knot of X-ray emission, we infer that this feature is due to a Rayleigh-Taylor finger that formed at the contact discontinuity and overtook the primary blast wave

    Radio Continuum Emission at 1.4 GHz from KISS Emission-Line Galaxies

    Full text link
    We have searched the Faint Images of the Radio Sky at Twenty centimeters (FIRST) and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio surveys for sources that are coincident with emission-line galaxy (ELG) candidates from the KPNO International Spectroscopic Survey (KISS). A total of 207 of the 2157 KISS ELGs (~10%) in the first two H-alpha-selected survey lists were found to possess radio detections in FIRST and/or NVSS. Follow-up spectra exist for all of the radio detections, allowing us to determine the activity type (star-forming vs. AGN) for the entire sample. We explore the properties of the radio-detected KISS galaxies in order to gain a better insight into the nature of radio-emitting galaxies in the local universe (z < 0.1). No dwarf galaxies were detected, despite the large numbers of low-luminosity galaxies present in KISS, suggesting that lower mass, lower luminosity objects do not possess strong galaxian-scale magnetic fields. Due to the selection technique used for KISS, our radio ELGs represent a quasi-volume-limited sample, which allows us to develop a clearer picture of the radio galaxy population at low redshift. Nearly 2/3rds of the KISS radio galaxies are starburst/star-forming galaxies, which is in stark contrast to the results of flux-limited radio surveys that are dominated by AGNs and elliptical galaxies (i.e., classic radio galaxies). While there are many AGNs among the KISS radio galaxies, there are no objects with large radio powers in our local volume. We derive a radio luminosity function (RLF) for the KISS ELGs that agrees very well with previous RLFs that adequately sample the lower-luminosity radio population.Comment: Accepted for publication in the Astronomical Journal (April 2004); 23 pages, 16 figure

    The KPNO International Spectroscopic Survey. IV. H-alpha-selected Survey List 2

    Full text link
    The KPNO International Spectroscopic Survey (KISS) is an objective-prism survey for extragalactic emission-line objects. It combines many of the features of previous slitless spectroscopic surveys with the advantages of modern CCD detectors, and is the first purely digital objective-prism survey for emission-line galaxies. Here we present the second list of emission-line galaxy candidates selected from our red spectral data, which cover the wavelength range 6400 to 7200 A. In most cases, the detected emission line is H-alpha. The current survey list covers a 1.6-degree-wide strip located at Dec(1950) = 43d 30' and spans the RA range 11h 55m to 16h 15m. The survey strip runs through the center of the Bootes Void, and has enough depth to adequately sample the far side of the void. An area of 65.8 sq. deg. is covered. A total of 1029 candidate emission-line objects have been selected for inclusion in the survey list (15.6 per sq. deg.). We tabulate accurate coordinates and photometry for each source, as well as estimates of the redshift and emission-line flux and equivalent width based on measurements of the digital objective-prism spectra. The properties of the KISS emission-line galaxies are examined using the available observational data. Although the current survey covers only a modest fraction of the total volume of the Bootes Void, we catalog at least twelve objects that appear to be located within the void. Only one of these objects has been recognized previously as a void galaxy.Comment: Accepted for publication in the Astronomical Journal (April 2004); 20 pages, 12 figure
    corecore