25 research outputs found

    How to Report Record Open‐Circuit Voltages in Lead‐Halide Perovskite Solar Cells

    No full text
    Open‐circuit voltages of lead‐halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open‐circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open‐circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta‐analysis of methods to determine the bandgap and a radiative limit for open‐circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed

    Quantifying Charge Extraction and Recombination Using the Rise and Decay of the Transient Photovoltage of Perovskite Solar Cells

    No full text
    The extraction of photogenerated charge carriers and the generation of a photovoltage belong to the fundamental functionalities of any solar cell. These processes happen not instantaneously but rather come with finite time constants, e.g., a time constant related to the rise of the externally measured open circuit voltage following a short light pulse. Herein, a new method to analyze transient photovoltage measurements at different bias light intensities combining rise and decay times of the photovoltage. The approach uses a linearized version of a system of two coupled differential equations that are solved analytically by determining the eigenvalues of a 2 × 2 matrix. By comparison between the eigenvalues and the measured rise and decay times during a transient photovoltage measurement, the rates of carrier recombination and extraction as a function of bias voltage are determined, and establish a simple link between their ratio and the efficiency losses in the perovskite solar cell

    Research Update: Recombination and open-circuit voltage in lead-halide perovskites

    No full text
    The high open-circuit voltage and the slow recombination in lead-halide perovskite solar cells has been one of the main contributors to their success as photovoltaic materials. Here, we review the knowledge on recombination in perovskite-based solar cells, compare the situation with silicon solar cells, and introduce the parameters used to describe recombination and open-circuit voltage losses in solar cells. We first discuss the effect of lifetimes and surface recombination velocities on photovoltaic performance before we study the microscopic origin of charge-carrier lifetimes. The lifetimes depend on defect positions and densities and on the kinetic prefactors that control the phonon-assisted interaction between the extended states in the conduction and valence band and the localized defect states. We finally argue that the key to understand the long lifetimes and high open-circuit voltages is a combination of a low density of deep defects and a slow dissipation of energy via multiphonon processes due to the low phonon energies in the lead-halide perovskites
    corecore