13 research outputs found

    Development of Two Animal Models To Study the Function of Vibrio parahaemolyticus Type III Secretion Systems

    No full text
    Vibrio parahaemolyticus is an emerging food- and waterborne pathogen that encodes two type III secretion systems (T3SSs). Previous studies have linked type III secretion system 1 (T3SS1) to cytotoxicity and T3SS2 to intestinal fluid accumulation, but animal challenge models needed to study these phenomena are limited. In this study we evaluated the roles of the T3SSs during infection using two novel animal models: a model in which piglets were inoculated orogastrically and a model in which mice were inoculated in their lungs (intrapulmonarily). The bacterial strains employed in this study had equivalent growth rates and beta-hemolytic activity based on in vitro assays. Inoculation of 48-h-old conventional piglets with 10 11 CFU of the wild-type strain (NY-4) or T3SS1 deletion mutant strains resulted in acute, self-limiting diarrhea, whereas inoculation with a T3SS2 deletion mutant strain failed to produce any clinical symptoms. Intrapulmonary inoculation of C57BL/6 mice with the wild-type strain and T3SS2 deletion mutant strains (5 × 10 5 CFU) induced mortality or a moribund state within 12 h (80 to 100% mortality), whereas inoculation with a T3SS1 deletion mutant or a T3SS1 T3SS2 double deletion mutant produced no mortality. Bacteria were recovered from multiple organs regardless of the strain used in the mouse model, indicating that the mice were capable of clearing the lung infection in the absence of a functional T3SS1. Because all strains had a similar beta-hemolysin phenotype, we surmise that thermostable direct hemolysin (TDH) plays a limited role in these models. The two models introduced herein produce robust results and provide a means to determine how different T3SS1 and T3SS2 effector proteins contribute to pathogenesis of V. parahaemolyticus infection

    Discovery of a Gene Conferring Multiple-Aminoglycoside Resistance in Escherichia coli

    No full text
    Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria

    Development of a DNA microarray for detection of expressed equine classical MHC class I sequences in a defined population

    No full text
    Development of an accurate and efficient molecular-based equine MHC class I typing method would facilitate the study of T lymphocyte immune responses in horses. Here, a DNA microarray was designed to detect expressed classical MHC class I genes comprising serologically defined equine leukocyte antigen (ELA)-A haplotypes represented in a closed Arabian horse breeding herd. Initially, cloning and sequencing of RT-PCR products were used to identify sequences associated with the ELA-A1, A4, and W11 haplotypes, and one undefined haplotype, in six horses. Subsequently, sequence-specific, conserved (positive control), and random nucleotide (negative control) 23- to 27-mer oligonucleotide microarray probes were designed and spotted onto an epoxy-coated masked slide using a robotic arrayer. Bulk RT-PCR products from each horse were biotinylated by nick translation, hybridized to the array, and detected using tyramide signal amplification. The microarray consistently detected eight of nine classical MHC class I transcripts and allowed ELA haplotypic associations to be made. Cloning and sequencing of RT-PCR products were then performed in a group of ELA disparate horses and ponies, in which six novel sequences were identified. This group was used to determine the specificity of the array. Overall, the microarray was more efficient than cloning and sequencing for detecting expressed classical MHC class I sequences in this defined population of horses, and was significantly more specific than serology. These results confirmed the utility of a microarray-based method for high-resolution MHC class I typing in the horse. With additional probes the array could be useful in a broader population

    Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system

    No full text
    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins

    Genotypic-phenotypic discrepancies between antibiotic resistance characteristics of Escherichia coli from calves in high and low antibiotic use management settings

    No full text
    We hypothesized that bacterial populations growing in the absence of antibiotics will accumulate more resistance gene mutations than bacterial populations growing in the presence of antibiotics. If this is so, the prevalence of dysfunctional resistance genes (resistance pseudogenes) could provide a measure of the level of antibiotic exposure present in a given environment. As a proof-of-concept test, we assayed field strains of Escherichia coli for their resistance genotypes using a resistance gene microarray and further characterized isolates that had resistance phenotype-genotype discrepancies. We found a small but significant association between the prevalence of isolates with resistance pseudogenes and the lower antibiotic use environment of a beef cow-calf operation versus a higher antibiotic use dairy calf ranch (Fisher's exact test, P = 0.044). Other significant findings include a very strong association between the dairy calf ranch isolates and phenotypes unexplained by well-known resistance genes (Fisher's exact test, P < 0.0001). Two novel resistance genes were discovered in E. coli isolates from the dairy calf ranch, one associated with resistance to aminoglycosides and one associated with resistance to trimethoprim. In addition, isolates resistant to expanded-spectrum cephalosporins but negative for blaCMY-2 had mutations in the promoter regions of the chromosomal E. coli ampC gene consistent with reported overexpression of native AmpC beta-lactamase. Similar mutations in hospital E. coli isolates have been reported worldwide. Prevalence or rates of E. coli ampC promoter mutations may be used as a marker for high expanded-spectrum cephalosporin use environments.Published copyDavis, M. A., T. E. Besser, L. H. Orfe, K.N.K. Baker, A. S. Lanier, S. L. Broschat, D. New, and D. R. Call, Genotypic-phenotypic discrepancies between antibiotic resistance characteristics of Escherichia coli from calves in high and low antibiotic use management settings, Applied and Environmental Microbiology, Vol. 77, No. 10, 3293-99, May 2011, PMCID3126435

    Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica

    Get PDF
    A microarray was developed to simultaneously screen Escherichia coli and Salmonella enterica for multiple genetic traits. The final array included 203 60-mer oligonucleotide probes, including 117 for resistance genes, 16 for virulence genes, 25 for replicon markers, and 45 other markers. Validity of the array was tested by assessing inter-laboratory agreement among four collaborating groups using a blinded study design. Internal validation indicated that the assay was reliable (area under the receiver-operator characteristic curve = 0.97). Inter-laboratory agreement, however, was poor when estimated using the intraclass correlation coefficient, which ranged from 0.27 (95% confidence interval 0.24, 0.29) to 0.29 (0.23, 0.34). These findings suggest that extensive testing and procedure standardization will be needed before bacterial genotyping arrays can be readily shared between laboratories

    ExsE Is a Negative Regulator for T3SS Gene Expression in Vibrio alginolyticus

    Get PDF
    Type III secretion systems (T3SSs) contribute to microbial pathogenesis of Vibrio species, but the regulatory mechanisms are complex. We determined if the classic ExsACDE protein-protein regulatory model from Pseudomonas aeruginosa applies to Vibrio alginolyticus. Deletion mutants in V. alginolyticus demonstrated that, as expected, the T3SS is positively regulated by ExsA and ExsC and negatively regulated by ExsD and ExsE. Interestingly, deletion of exsE enhanced the ability of V. alginolyticus to induce host-cell death while cytotoxicity was inhibited by in trans complementation of this gene in a wild-type strain, a result that differs from a similar experiment with Vibrio parahaemolyticus ExsE. We further showed that ExsE is a secreted protein that does not contribute to adhesion to Fathead minnow epithelial cells. An in vitro co-immunoprecipitation assay confirmed that ExsE binds to ExsC to exert negative regulatory effect on T3SS genes. T3SS in V. alginolyticus can be activated in the absence of physical contact with host cells and a separate regulatory pathway appears to contribute to the regulation of ExsA. Consequently, like ExsE from P. aeruginosa, ExsE is a negative regulator for T3SS gene expression in V. alginolyticus. Unlike the V. parahaemolyticus orthologue, however, deletion of exsE from V. alginolyticus enhanced in vitro cytotoxicity

    blaCMY-2-Positive IncA/C Plasmids from Escherichia coli and Salmonella enterica Are a Distinct Component of a Larger Lineage of Plasmids

    No full text
    Large multidrug resistance plasmids of the A/C incompatibility complex (IncA/C) have been found in a diverse group of Gram-negative commensal and pathogenic bacteria. We present three completed sequences from IncA/C plasmids that originated from Escherichia coli (cattle) and Salmonella enterica serovar Newport (human) and that carry the cephamycinase gene bla CMY-2 . These large plasmids (148 to 166 kbp) share extensive sequence identity and synteny. The most divergent plasmid, peH4H, has lost several conjugation-related genes and has gained a kanamycin resistance region. Two of the plasmids (pAM04528 and peH4H) harbor two copies of bla CMY-2 , while the third plasmid (pAR060302) harbors a single copy of the gene. The majority of single-nucleotide polymorphisms comprise nonsynonymous mutations in floR . A comparative analysis of these plasmids with five other published IncA/C plasmids showed that the bla CMY-2 plasmids from E. coli and S. enterica are genetically distinct from those originating from Yersinia pestis and Photobacterium damselae and distal to one originating from Yersinia ruckeri . While the overall similarity of these plasmids supports the likelihood of recent movements among E. coli and S. enterica hosts, their greater divergence from Y. pestis or Y. ruckeri suggests less recent plasmid transfer among these pathogen groups
    corecore