21 research outputs found
Immunogenicity and protective efficacy of a rhesus adenoviral vaccine targeting conserved COVID-19 replication transcription complex
The COVID-19 pandemic marks the third coronavirus pandemic this century (SARS-CoV-1, MERS, SARS-CoV-2), emphasizing the need to identify and evaluate conserved immunogens for a pan-sarbecovirus vaccine. Here we investigate the potential utility of a T-cell vaccine strategy targeting conserved regions of the sarbecovirus proteome. We identified the most conserved regions of the sarbecovirus proteome as portions of the RNA-dependent RNA polymerase (RdRp) and Helicase proteins, both of which are part of the coronavirus replication transcription complex (RTC). Fitness constraints suggest that as SARS-CoV-2 continues to evolve these regions may better preserve cross-reactive potential of T-cell responses than Spike, Nucleocapsid, or Membrane proteins. We sought to determine if vaccine-elicited T-cell responses to the highly conserved regions of the RTC would reduce viral loads following challenge with SARS-CoV-2 in mice using a rhesus adenovirus serotype 52 (RhAd52) vector. The RhAd52.CoV.Consv vaccine generated robust cellular immunity in mice and led to significant reductions in viral loads in the nasal turbinates following challenge with a mouse-adapted SARS-CoV-2. These data suggest the potential utility of T-cell targeting of conserved regions for a pan-sarbecovirus vaccine
SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques
Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain–hepatitis B surface antigen virus–like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses
Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans
The Ad26.COV2.S vaccine1–3 has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies1. However, the immunogenicity of this vaccine in humans against SARS-CoV-2 variants of concern remains unclear. Here we report humoral and cellular immune responses from 20 Ad26.COV2.S vaccinated individuals from the COV1001 phase 1/2 clinical trial2 against the original SARS-CoV-2 strain WA1/2020 as well as against the B.1.1.7, CAL.20C, P.1., and B.1.351 variants of concern. Ad26.COV2.S induced median pseudovirus neutralizing antibody titers that were 5.0- and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 following vaccination. Median binding antibody titers were 2.9- and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020. Antibody-dependent cellular phagocytosis, complement deposition, and NK cell activation responses were largely preserved against the B.1.351 variant. CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1, and CAL.20C variants. These data show that neutralizing antibody responses induced by Ad26.COV2.S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern
COVID-19 vaccines: Immune correlates and clinical outcomes
ABSTRACTSevere disease due to COVID-19 has declined dramatically as a result of widespread vaccination and natural immunity in the population. With the emergence of SARS-CoV-2 variants that largely escape vaccine-elicited neutralizing antibody responses, the efficacy of the original vaccines has waned and has required vaccine updating and boosting. Nevertheless, hospitalizations and deaths due to COVID-19 have remained low. In this review, we summarize current knowledge of immune responses that contribute to population immunity and the mechanisms how vaccines attenuate COVID-19 disease severity
Polyelectrolyte Multilayers Assembled Entirely from Immune Signals on Gold Nanoparticle Templates Promote Antigen-Specific T Cell Response
Materials that allow modular, defined assembly of immune signals could support a new generation of rationally designed vaccines that promote tunable immune responses. Toward this goal, we have developed the first polyelectrolyte multilayer (PEM) coatings built entirely from immune signals. These immune-PEMs (iPEMs) are self-assembled on gold nanoparticle templates through stepwise electrostatic interactions between peptide antigen and polyanionic toll-like receptor (TLR) agonists that serve as molecular adjuvants. iPEMs do not require solvents or mixing, offer direct control over the composition and loading of vaccine components, and can be coated on substrates at any scale. These films also do not require other structural components, eliminating the potentially confounding effects caused by the inherent immune-stimulatory characteristics of many synthetic polymers. iPEM loading on gold nanoparticle substrates is tunable, and cryoTEM reveals iPEM shells coated on gold cores. These nanoparticles are efficiently internalized by primary dendritic cells (DCs), resulting in activation, selective triggering of TLR signaling, and presentation of the antigens used to assemble iPEMs. In coculture, iPEMs drive antigen-specific T cell proliferation and effector cytokines but not cytokines associated with more generalized inflammation. Compared to mice treated with soluble antigen and adjuvant, iPEM immunization promotes high levels of antigen-specific CD8<sup>+</sup> T cells in peripheral blood after 1 week. These enhancements result from increased DC activation and antigen presentation in draining lymph nodes. iPEM-immunized mice also exhibit a potent recall response after boosting, supporting the potential of iPEMs for designing well-defined vaccine coatings that provide high cargo density and eliminate synthetic film components
<i>In Vivo</i> Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers
Microneedles
(MNs) are micron-scale polymeric or metallic structures
that offer distinct advantages for vaccines by efficiently targeting
skin-resident immune cells, eliminating injection-associated pain,
and improving patient compliance. These advantages, along with recent
studies showing therapeutic benefits achieved using traditional intradermal
injections in human cancer patients, suggest MN delivery might enhance
cancer vaccines and immunotherapies. We recently developed a new class
of polyelectrolyte multilayers based on the self-assembly of model
peptide antigens and molecular toll-like receptor agonists (TLRa)
into ultrathin, conformal coatings. Here, we reasoned that these immune
polyelectrolyte multilayers (iPEMs) might be a useful platform for
assembling cancer vaccine components on MN arrays for intradermal
delivery from these substrates. Using conserved human melanoma antigens
and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be
assembled on MNs in an automated fashion. These films, prepared with
up to 128 layers, are approximately 200 nm thick but provide cancer
vaccine cargo loading >225 ÎĽg/cm<sup>2</sup>. In cell culture,
iPEM cargo released from MNs is internalized by primary dendritic
cells, promotes activation of these cells, and expands T cells during
coculture. In mice, application of iPEM-coated MNs results in the
codelivery of tumor antigen and CpG through the skin, expanding tumor-specific
T cells during initial MN applications and resulting in larger memory
recall responses during a subsequent booster MN application. This
study support MNs coated with PEMs built from tumor vaccine components
as a well-defined, modular system for generating tumor-specific immune
responses, enabling new approaches that can be explored in combination
with checkpoint blockade or other combination cancer therapies
Reprogramming the Local Lymph Node Microenvironment Promotes Tolerance that Is Systemic and Antigen Specific
Many experimental therapies for autoimmune diseases, such as multiple sclerosis (MS), aim to bias TÂ cells toward tolerogenic phenotypes without broad suppression. However, the link between local signal integration in lymph nodes (LNs) and the specificity of systemic tolerance is not well understood. We used intra-LN injection of polymer particles to study tolerance as a function of signals in the LN microenvironment. In a mouse MS model, intra-LN introduction of encapsulated myelin self-antigen and a regulatory signal (rapamycin) permanently reversed paralysis after one treatment during peak disease. Therapeutic effects were myelin specific, required antigen encapsulation, and were less potent without rapamycin. This efficacy was accompanied by local LN reorganization, reduced inflammation, systemic expansion of regulatory TÂ cells, and reduced TÂ cell infiltration to the CNS. Our findings suggest that local control over signaling in distinct LNs can promote cell types and functions that drive tolerance that is systemic but antigen specific