67 research outputs found

    CHARACTERIZATION OF HIGH LEVELS OF RADIATION EXPOSURE IN A LARGE VOLUME PEDIATRIC CARDIAC CATHETERIZATION LAB

    Get PDF

    Development of a Charge Adjustment Model for Cardiac Catheterization

    Get PDF
    A methodology that would allow for comparison of charges across institutions has not been developed for catheterization in congenital heart disease. A single institution catheterization database with prospectively collected case characteristics was linked to hospital charges related and limited to an episode of care in the catheterization laboratory for fiscal years 2008–2010. Catheterization charge categories (CCC) were developed to group types of catheterization procedures using a combination of empiric data and expert consensus. A multivariable model with outcome charges was created using CCC and additional patient and procedural characteristics. In 3 fiscal years, 3,839 cases were available for analysis. Forty catheterization procedure types were categorized into 7 CCC yielding a grouper variable with an R2 explanatory value of 72.6 %. In the final CCC, the largest proportion of cases was in CCC 2 (34 %), which included diagnostic cases without intervention. Biopsy cases were isolated in CCC 1 (12 %), and percutaneous pulmonary valve placement alone made up CCC 7 (2 %). The final model included CCC, number of interventions, and cardiac diagnosis (R2 = 74.2 %). Additionally, current financial metrics such as APR-DRG severity of illness and case mix index demonstrated a lack of correlation with CCC. We have developed a catheterization procedure type financial grouper that accounts for the diverse case population encountered in catheterization for congenital heart disease. CCC and our multivariable model could be used to understand financial characteristics of a population at a single point in time, longitudinally, and to compare populations

    A Monte Carlo simulation approach to optimizing capacity in a high-volume congenital heart pediatric surgical center

    Get PDF
    Importance: Elective surgeries are primarily scheduled according to surgeon availability with less consideration of patients' postoperative cardiac intensive care unit (CICU) length of stay. Furthermore, the CICU census can exhibit a high rate of variation in which the CICU is operating at over-capacity, resulting in admission delays and cancellations; or under-capacity, resulting in underutilized labor and overhead expenditures. Objective: To identify strategies to reduce variation in CICU occupancy levels and avoid late patient surgery cancellation. Design: Monte Carlo simulation study of the daily and weekly CICU census at Boston Children's Hospital Heart Center. Data on all surgical admissions to and discharges from the CICU at Boston Children's Hospital between September 1, 2009 and November 2019 were included to obtain the distribution of length of stay for the simulation study. The available data allows us to model realistic length of stay samples that include short and extended lengths of stay. Main Outcomes: Annual number of patient surgical cancellations and change in average daily census. Results: We demonstrate that the models of strategic scheduling would result in up to 57% reduction in patient surgical cancellations, increase the historically low Monday census and decrease the historically higher late-mid-week (Wednesday and Thursday) censuses in our center. Conclusions and Relevance: Use of strategic scheduling may improve surgical capacity and reduce the number of annual cancellations. The reduction of peaks and valleys in the weekly census corresponds to a reduction of underutilization and overutilization of the system

    Cutting-balloon therapy superior to high-pressure balloon angioplasty in pulmonary artery stenosis

    No full text
    corecore