3,003 research outputs found

    Multi-line detection of O_2 toward ρ Ophiuchi A

    Get PDF
    Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O_2, and water, H_(2)O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O_2 in the dense star-forming interstellar medium. Aims. Only toward ρOph   A did Odin detect a very weak line of O_2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O2 emission and pinpoint its origin. Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O_2 spectra toward selected positions in the ρOph A   core. These data are analysed using standard techniques for O_2 excitation and compared to recent PDR-like chemical cloud models. Results. The N_J = 3_(3) − 1_(2) line at 487.2 GHz is clearly detected toward all three observed positions in the ρOph A  core. In addition, an oversampled map of the 5_(4)−3_(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O_2 emitting gas appears to vary quite substantially, with warm gas (≳ 50K) being adjacent to a much colder region, of temperatures lower than 30 K. Conclusions. The exploited models predict that the O_2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O_2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O_2) = 3 to ≳ 6 × 10^(15) cm^(-2). Beam-averaged O2 abundances are about 5 × 10^(-8) relative to H_2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire ρOph A core. We speculate that one of the reasons for the generally very low detection rate of O2 is the short period of time during which O_2 molecules are reasonably abundant in molecular clouds

    Herschel/HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2

    Get PDF
    Herschel/HIFI observations of water from the intermediate mass protostar NGC 7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four H_2^(16)O and two H_2^(18)O lines, were observed and all but one H_2^(18)O line were detected. The four H_2 ^(16)O lines discussed here share a similar morphology: a narrower, ≈6km s^(−1), component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, ≈25 km s^(−1) component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H_2O is constrained to ≈10^(−7) for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H_2O/CO relative abundance is found to be ≈0.2, appears to be tracing the same energetic region that produces strong CO emission at high J

    Submillimeter Imaging of NGC 891 with SHARC

    Get PDF
    The advent of submillimeter wavelength array cameras operating on large ground-based telescopes is revolutionizing imaging at these wavelengths, enabling high-resolution submillimeter surveys of dust emission in star-forming regions and galaxies. Here we present a recent 350 micron image of the edge-on galaxy NGC 891, which was obtained with the Submillimeter High Angular Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We find that high resolution submillimeter data is a vital complement to shorter wavelength satellite data, which enables a reliable separation of the cold dust component seen at millimeter wavelengths from the warmer component which dominates the far-infrared (FIR) luminosity.Comment: 4 pages LaTeX, 2 EPS figures, with PASPconf.sty; to appear in "Astrophysics with Infrared Surveys: A Prelude to SIRTF
    corecore