89 research outputs found

    On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses - the ISOS-3 inter-laboratory collaboration

    Get PDF
    This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISO-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N 2) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO 3), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime. © 2012 the Owner Societies.This work has been supported by the Danish Strategic Research Council (2104-07-0022), EUDP (j.no. 64009-0050), and the Danish National Research Foundation. Partial financial support was also received from the European Commission as part of the Framework 7 ICT 2009 collaborative project HIFLEX (grant no. 248678), partial financial support from the EUIndian framework of the ‘‘Largecells’’ project that received funding from the European Commission’s Seventh Framework Programme (FP7/2007–2013. grant no. 261936), partial financial support was also received from the European Commission as part of the Framework 7 ICT 2009 collaborative project ROTROT (grant no. 288565) and from PVERA-NET (project acronym POLYSTAR). To CONACYT (México) for the Ph.D. scholarship awarded to G. T.-E, to the Spanish Ministry of Science and Innovation, MICINN-FEDER project ENE2008-04373, to the Consolider NANOSELECT project CSD2007-00041, to the Xarxa de Referència en Materials Avançats per a l’Energia, XaRMAE of the Catalonia Government (Spain). RR and HH are grateful for financial support from the Thuringian Ministry of Culture and the German Federal Ministry of Education and Research in the frameworks of FIPV II and PPP (contract number 13N9843), respectively. DMT acknowledges generous support from the Inger and Jens Bruun Foundation through The American–Scandinavian Foundation.Peer Reviewe

    Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Get PDF
    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ∼22.3% and ∼28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.The authors thank LNNano/LNLS for the AFM and KPFM images, and INEO, CNPq (fellowship 246430/2012-5), and FAPESP (fellowship 2010/18656-1) for the financial supports. MINECO for the economic support through the ENE2013-48816-C5-4-R project. The COST Action StableNextSol project MP1307. The Agència de Gestió d’Ajuts Universitaris i de Recerca for the project 2014 SGR 1212. FASL would like to thank to the Secretary of Education of the State of Ceará (SEDUC-CE) for the financial support.Peer reviewe

    Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells

    Get PDF
    El pdf del artículo es la versión pre-print.Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m2/g and 304 m2/g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP). © 2011 Elsevier B.V. All rights reserved.This work was funded by the Government of Aragon and La Caixa (project ref. GA-LC-041/2008) and by the Spanish MICINN (projects ref. EUI2008-00152 and ENE2008-04373). We thank the Spanish National Research Council (CSIC) for the JAE-Doc contracts awarded to Y.Y. and A.A. To the Xarxa de Referència en Materials Avanc¸ ats per a l’Energia, XaRMAE (Reference Center for Advanced Materials for Energy) of the Catalonia Government.Peer Reviewe

    Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3quantum dots

    Get PDF
    Perovskite solar cells (PSCs) are one of the most prominent photovoltaic technologies. However, PSCs still encounter great challenges of scaling up from laboratorial cells to industrial modules without serious performance loss while maintaining excellent long-term stability, owing to the resistive losses and extra instability factors that scale quadratically with the device area. Here, we manifest a concept of multifunctional interface modulation for highly efficient and stable perovskite solar modules (PSMs). The advisably designed multifunctional interface modulator GO/QD crosslinks the CsPbBr3 perovskite quantum dots (QDs) on the conductive graphene oxide (GO) surfaces, which significantly improve charge transport and energy band alignment at the perovskite/hole transporting layer interface to reduce the charge transport resistance while passivating the surface defects of the perovskite to inhibit carrier recombination resistive losses. Moreover, the GO/QD interlayer acts as a robust permeation barrier that modulates the undesirable interfacial ion and moisture diffusion. Consequently, we adopt a scalable vacuum flash-assisted solution processing (VASP) method to achieve a certified stabilized power output efficiency of 17.85% (lab-measured champion efficiency of 18.55%) for the mini-modules. The encapsulated PSMs achieve over 90% of their initial efficiency after continuous operation under 1 sun illumination and the damp heat test at 85 °C, respectively. This journal isThe authors acknowledge financial from the National Natural Science Foundation of China (21875081, 91733301, and 51972251), the Chinese National 1000-Talent-Plan program, the Foundation of State Key Laboratory of Coal Conversion (Grant No. J18-19-913), and the Frontier Project of the Application Foundation of Wuhan Science and Technology Plan Project (2020010601012202)

    Ionic liquid stabilized perovskite solar modules with power conversion efficiency exceeding 20%

    Get PDF
    Metal-halide perovskite solar cells (PSCs) exhibit outstanding power conversion efficiencies (PCEs) when fabricated as mm-sized devices, but creation of high-performing large-area modules that are stable on a sufficiently long timescale still presents a significant challenge. Herein, the quality of large-area perovskite film is improved by using ionic liquid additives via forming a new Pb-N bonding between the ionic liquid and Pb2+. This new bond can be modulated by a critical screening of the anion structure of the ionic liquid. The selected ionic liquid effectively reduces the defects of the perovskite films and markedly elongate their carrier lifetimes. As a result, a champion PCE of 24.4% for small-area (0.148 cm2) devices and 20.4% for larger-area (10.0 cm2) modules under AM 1.5G irradiation is achieved. More importantly, the modified devices retain 90% of their peak PCE after aging for 1900 h at 65 ± 5 °C (ISOS-T-1) and 80% after continuous light soaking for 750 h. The non-encapsulated modules maintained 80% of their peak PCE after 1100 h of aging in the air with a relative humidity of 35 ± 5% and temperature of 25 ± 5 °C under dark (ISOS-D-1), showing great potential for future commercialization.This work was financially supported by the National Natural Science Foundation of China (91963209, 52002302, 22075221), the Natural Science Foundation of Hubei Provincial (2020CFB172, 2020CFA087), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHD2020-001), and the Fundamental Research Funds for the Central Universities (WUT: 2020III032, 2021VA101, 2021IVB038). M.H. acknowledges the support from State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) and SRR acknowledges the support from ‘laCaixa’ Foundation (ID 100010434) with fellowship code LCF/BQ/PI20/11760024.Peer reviewe

    Next generation photovoltaics: Perovskite solar cells

    No full text
    Trabajo presentado al Congreso NANO (Nanotecnología y Ciencias), celebrado de forma virtual en Monterrey, Nuevo León (México) del 13 al 15 de Mayo 2021.Peer reviewe

    Halide Perovskite Solar Cells: Strategies for High Stability

    No full text
    Trabajo presentado en NanoGe Spring Meeting 2022, conferencia bajo el título "Towards stable perovskite photovoltaics - TSPV22", celebrada online entre el 7 y el 11 de marzo de 2022

    Óxido de titanio dopado con niobio para la elaboración de células solares híbridas estables en atmósfera inerte

    No full text
    La presente invención se refiere a un dispositivo fotovoltaico que comprende un óxido semiconductor inorgánico dopado con al menos un 10% en peso de Nb, un semiconductor orgánico, y Nb02 . También se refiere a su procedimiento de obtención y a sus usos para la fabricación de células solares estables en atmósfera inerte.Peer reviewedConsejo Superior de Investigaciones Científicas (España)A1 Solicitud de patente con informe sobre el estado de la técnic
    • …
    corecore