148 research outputs found

    Predicting nucleosome positioning using a duration Hidden Markov Model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleosome is the fundamental packing unit of DNAs in eukaryotic cells. Its detailed positioning on the genome is closely related to chromosome functions. Increasing evidence has shown that genomic DNA sequence itself is highly predictive of nucleosome positioning genome-wide. Therefore a fast software tool for predicting nucleosome positioning can help understanding how a genome's nucleosome organization may facilitate genome function.</p> <p>Results</p> <p>We present a duration Hidden Markov model for nucleosome positioning prediction by explicitly modeling the linker DNA length. The nucleosome and linker models trained from yeast data are re-scaled when making predictions for other species to adjust for differences in base composition. A software tool named NuPoP is developed in three formats for free download.</p> <p>Conclusions</p> <p>Simulation studies show that modeling the linker length distribution and utilizing a base composition re-scaling method both improve the prediction of nucleosome positioning regarding sensitivity and false discovery rate. NuPoP provides a user-friendly software tool for predicting the nucleosome occupancy and the most probable nucleosome positioning map for genomic sequences of any size. When compared with two existing methods, NuPoP shows improved performance in sensitivity.</p

    Design and losses analysis of a high power density machine for flooded pump applications

    Get PDF
    This paper describes the design process of a 10 kW 19000 rpm high power density surface mounted permanent magnet synchronous machine for a directly coupled pump application. In order to meet the required specifications, a compact machine, with cooling channels inside the slots and flooded airgap, has been designed through finite element optimization. For high power density, high speed machines, an accurate evaluation of the power losses and the electromechanical performance is always extremely challenging. In this case, the completely flooded application adds to the general complexity. Therefore this paper deals with a detailed losses analysis (copper, core, eddy current and mechanical losses) considering several operating conditions. The experimental measurements of AC copper losses as well as the material properties (BH curve and specific core losses), including the manufacturing process effect on the stator core, are presented. Accurate 3D finite element models and computational fluid dynamics analysis have been used to determine the eddy current losses in the rotor and windage losses respectively. Based on these detailed analysis, the no load and full load performance are evaluated. The experimental results, on the manufactured prototype, are finally presented to validate the machine design

    Spatiotemporal cluster patterns of hand, Foot, and mouth disease at the county level in Mainland China, 2008-2012

    Get PDF
    Background: Hand, foot, and mouth disease (HFMD) is known to be a highly contagious childhood illness. In recent years, the number of reported cases of HFMD has significantly increased in mainland China. This study aims at the epidemiological features, spatiotemporal patterns of HMFD at the county/district level in mainland China. Methods: Data on reported HFMD cases for each county from 1 January 2008 to 31 December 2012 were obtained from the Chinese Center for Disease Control and Prevention. Cluster analysis, spatial autocorrelation, and retrospective scan methods were used to explore the spatiotemporal patterns of the disease. Results: The annual incidences varied greatly among the counties, ranging from 0 to 74.31‰with the median of 5.42‰ (interquartile range: 1.54‰–13.55‰) during 2008–2012 in mainland China. Counties close to provincial capital cities generally had higher incidences than rural counties. A seasonal distribution was observed between the northern and southern China, of which dual epidemic were shown in southern China and usually only one in northern China. Based on the global and local spatial autocorrelation analysis, we found that the spatial distribution of HFMD was presented a significant clustering pattern for each year (P Conclusions: The spatiotemporal clustering areas of the disease identified in this way were relatively stable, and imminent public health planning and resource allocation should be focused within those areas

    Nitroxoline suppresses metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway

    Get PDF
    Bladder cancer is one of the most common and deadly cancer worldwide. Current chemotherapy has shown limited efficacy in improving outcomes for patients. Nitroxoline, an old and widely used oral antibiotic, which was known to treat for urinary tract infection for decades. Recent studies suggested that nitroxoline suppressed the tumor progression and metastasis, especially in bladder cancer. However, the underlying mechanism for anti-tumor activity of nitroxoline remains unclear. Methods: CircRNA microarray was used to explore the nitroxoline-mediated circRNA expression profile of bladder cancer lines. Transwell and wound-healing assay were applied to evaluate the capacity of metastasis. ChIP assay was chosen to prove the binding of promotor and transcription factor. RNA-pulldown assay was performed to explore the sponge of circRNA and microRNA. Results: We first identified the circNDRG1 (has_circ_0085656) as a novel candidate circRNA. Transwell and wound-healing assay demonstrated that circNDRG1 inhibited the metastasis of bladder cancer. ChIP assay showed that circNDRG1 was regulated by the transcription factor EGR1 by binding the promotor of host gene NDRG1. RNA-pulldown assay proved that circNDRG1 sponged miR-520h leading to the overexpression of smad7, which was a negative regulatory protein of EMT. Conclusions: Our research revealed that nitroxoline may suppress metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway

    Improved Thermal Modelling and Experimental Validation of Oil-Flooded High Performance Machines with Slot-Channel Cooling

    Get PDF
    Thermal management is often considered a bottleneck in the pursuit of the next generation electrical machines for electrified transportation with a step change in power density. Slot-channel cooling is considered to be an effective cooling technique, either as an independent method or as a secondary heat transfer path which compliments traditional cooling systems. The slot-channel specific geometry and position effects on the thermal benefits are not thoroughly investigated in literature, while previous work focuses on passing fluid through the un-used space left in between coils forming concentrated windings. In this paper, slot-channel cooling is implemented within an oil-flooded cooling system for a high power density motor used as a pump. A flexible and detailed lumped parameter thermal network (LPTN) is proposed for the cooling system, with the LPTN used to optimize the slot-channel dimensions and location for obtaining maximum thermal benefits. Finally, a surface-mount permanent magnet (SPM) machine with the optimized slot channel geometry is built and tested to validate the thermal model, experimentally achieving an armature continuous current density in excess of 30A/mm2

    Spatiotemporal cluster patterns of hand, foot, and mouth disease at the county level in Mainland China, 2008-2012

    Get PDF
    Background: Hand, foot, and mouth disease (HFMD) is known to be a highly contagious childhood illness. In recent years, the number of reported cases of HFMD has significantly increased in mainland China. This study aims at the epidemiological features, spatiotemporal patterns of HMFD at the county/district level in mainland China. Methods: Data on reported HFMD cases for each county from 1 January 2008 to 31 December 2012 were obtained from the Chinese Center for Disease Control and Prevention. Cluster analysis, spatial autocorrelation, and retrospective scan methods were used to explore the spatiotemporal patterns of the disease. Results: The annual incidences varied greatly among the counties, ranging from 0 to 74.31‰with the median of 5.42‰ (interquartile range: 1.54‰–13.55‰) during 2008–2012 in mainland China. Counties close to provincial capital cities generally had higher incidences than rural counties. A seasonal distribution was observed between the northern and southern China, of which dual epidemic were shown in southern China and usually only one in northern China. Based on the global and local spatial autocorrelation analysis, we found that the spatial distribution of HFMD was presented a significant clustering pattern for each year (P \u3c 0.001), and hotspots of the disease were mostly distributed in coastal provinces of China. The retrospective scan statistic further identified the dynamics of spatiotemporal clustering areas of the disease, which were mainly distributed in the counties of eastern and southern China, as well as provincial capitals and their surrounding counties. Conclusions: The spatiotemporal clustering areas of the disease identified in this way were relatively stable, and imminent public health planning and resource allocation should be focused within those areas

    Tumor-Initiating Cells Are Enriched in CD44hi Population in Murine Salivary Gland Tumor

    Get PDF
    Tumor-initiating cells (T-ICs) discovered in various tumors have been widely reported. However, T-IC populations in salivary gland tumors have yet to be elucidated. Using the established Pleomorphic Adenoma Gene-1 (Plag1) transgenic mouse model of a salivary gland tumor, we identified CD44high (CD44hi) tumor cells, characterized by high levels of CD44 cell surface expression, as the T-ICs for pleomorphic adenomas. These CD44hi tumor cells incorporated 5-bromo-2-deoxyuridine (BrdU), at a lower rate than their CD44negative (CD44neg) counterparts, and also retained BrdU for a long period of time. Cell surface maker analysis revealed that 25% of the CD44hi tumor cells co-express other cancer stem cell markers such as CD133 and CD117. As few as 500 CD44hi tumor cells were sufficient to initiate pleomorphic adenomas in one third of the wildtype mice, whereas more than 1×104 CD44neg cells were needed for the same purpose. In NIH 3T3 cells, Plag1 was capable of activating the gene transcription of Egr1, a known upregulator for CD44. Furthermore, deletion of sequence 81–96 in the Egr1 promoter region abolished the effect of Plag1 on Egr1 upregulation. Our results establish the existence of T-ICs in murine salivary gland tumors, and suggest a potential molecular mechanism for CD44 upregulation
    • …
    corecore