117 research outputs found

    Experimental study on propagation and attenuation regularity of landslide surge

    Get PDF
    On the basis of landslide surge model test by adopting generalized simulation of waterways, this paper, for the first time, established a four-dimensional mathematical model between wave height transmissibility rate and the initial wave height, water depth, azimuth angle as well as propagation distance through utilizing the method of tensor space mapping. Using the new model, we proposed an empirical wave field covering all areas of the channel including the attenuation area within the width of a landslide mass, the straight channel attenuation area outside the width of the landslide mass, the curved channel attenuation area and the after-curve attenuation area, which comprehensively reflects the progressive changes of surge wave factors. The transmissibility of wave height and propagation distance are in a bivariate negative exponential distribution, and the wave height gradually reduces and the attenuation also slows down as the propagation distance increases; wave height transmissibility rate, azimuth and propagation distance are in a trivariate negative exponential distribution, the attenuation of the wave height in the straight channel within the width of the landslide mass was the slowest, followed by that of wave in the straight channel outside the width of the landslide mass, and the attenuation of the wave height in the curved channel is the greatest. This empirical wave field was based on test data, scientifically abstracted the general regularity of the propagation and attenuation of landslide surge, which can be applied to similar analyses and forecasts on landslide surge and can scientifically and accurately determine the damage range of landslide surge

    GPR56 Plays Varying Roles in Endogenous Cancer Progression

    Get PDF
    2011 March 29GPR56, a non-classical adhesion receptor, was previously reported to suppress tumor growth and metastasis in xenograft models using human melanoma cell lines. To understand whether GPR56 plays similar roles in the development of endogenous tumors, we analyzed cancer progression in Gpr56 [superscript −/−] mice using a variety of transgenic cancer models. Our results showed that GPR56 suppressed prostate cancer progression in the TRAMP model on a mixed genetic background, similar to its roles in progression of melanoma xenografts. However, its roles in other cancer types appeared to be complex. It had marginal effects on tumor onset of mammary tumors in the MMTV–PyMT model, but had no effects on subsequent tumor progression in either the MMTV–PyMT mice or the melanoma model, Ink4a/Arf [superscript −/−] tyr-Hras. These results indicate diverse roles of GPR56 in cancer progression and provide the first genetic evidence for the involvement of an adhesion GPCR in endogenous cancer development

    Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts

    Get PDF
    Photocatalytic oxidative coupling of methane (OCM) produces C2 molecules that can be used as building blocks for synthesis of fuels and chemicals. However, the yield rate and the selectivity of C2 products are still moderate due to the stable nature of methane molecules. Here we develop a Au nanocluster-loaded TiO2 photocatalyst by a sputtering approach, achieving a high methane conversion rate of 1.1 mmol h−1, C2 selectivity of ~90% and apparent quantum efficiency of 10.3 ± 0.6%. The high C2/C2+ yield rate is on the same order of magnitude as the benchmark thermal catalysts in OCM processes operated at high temperature (>680 °C). Au nanoparticles are shown to prolong TiO2 photoelectron lifetimes by a factor of 66 for O2 reduction, together with Au acting as a hole acceptor and catalytic centre to promote methane adsorption, C–H activation and C–C coupling. This work underscores the importance of multifunctional co-catalysts and mechanistic understanding to improve photocatalytic OCM

    GPR56 Regulates VEGF Production and Angiogenesis during Melanoma Progression

    Get PDF
    2012 February 15Angiogenesis is a critical step during cancer progression. The VEGF is a major stimulator for angiogenesis and is predominantly contributed by cancer cells in tumors. Inhibition of the VEGF signaling pathway has shown promising therapeutic benefits for cancer patients, but adaptive tumor responses are often observed, indicating the need for further understanding of VEGF regulation. We report that a novel G protein–coupled receptor, GPR56, inhibits VEGF production from the melanoma cell lines and impedes melanoma angiogenesis and growth, through the serine threonine proline-rich segment in its N-terminus and a signaling pathway involving protein kinase Cα. We also present evidence that the two fragments of GPR56, which are generated by autocatalyzed cleavage, played distinct roles in regulating VEGF production and melanoma progression. Finally, consistent with its suppressive roles in melanoma progression, the expression levels of GPR56 are inversely correlated with the malignancy of melanomas in human subjects. We propose that components of the GPR56-mediated signaling pathway may serve as new targets for antiangiogenic treatment of melanoma. Cancer Res; 71(16); 5558–68.National Institutes of Health (U.S.) (U54CA126515)Howard Hughes Medical Institut

    Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    Get PDF
    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, because of the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, for example, Na0.44MnO2, were proposed, few negative electrode materials, for example, activated carbon and NaTi2(PO4)(3), are available. Here we show that Ti-substituted Na0.44MnO2 (Na-0.44[Mn1-xTix] O-2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/ charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na-0.44[Mn1-xTix]O-2 is a promising negative electrode material for aqueous sodium-ion batteries.

    Li2NiO2F a new oxyfluoride disordered rocksalt cathode material

    Get PDF
    Lithium-rich disordered rocksalts such as Li1.3Nb0.3Mn0.4O2 and Li2MnO2F are being investigated as high energy density cathodes for next generation Li-ion batteries. They can support the (de) lithiation of lithium ions over large compositional ranges while preserving the same overall structure. Here, we present a new Ni-rich oxyfluoride cathode, Li2NiO2F, with a disordered rocksalt structure. Li2NiO2F and can deliver a discharge capacity of 200 mAh g−1 at an average voltage of 3.2 V
    • 

    corecore