151 research outputs found

    Values in Action Inventory of Strengths の簡易版,Character Strengths Rating Form(CSRF)の日中翻訳

    Get PDF
     本稿はValue in Action Inventory of Strengths(Peterson & Seligman, 2004)の簡易版であるCharacter Strengths Rating Form(CSRF;Ruch, Martínez-Martí, Proyer, & Harzer,2014)を日本語・中国語に翻訳したものである。VIA-ISは人の幸福につながる特性を網羅的に示したもので,6領域24 種類のcharacter strengthsそれぞれに10項目,総計240項目で構成された尺度である。筆者達はこの総数の多さがcharacter strengths研究の発展に関して一種の障害になっていると考えた。この点,Ruchらが開発したCSRFは24 項目しかないため大規模の研究や縦断研究に利用することが期待できる。他方でこの簡易版の各項目の問いはとても長く,その中に西洋文化や哲学的内容に関わる用語が多く含まれており,わかりやすく正確に翻訳することは簡単ではない。そこで本稿では,これを丁寧に日本語・中国語へ翻訳した。これを用いることで,大規模調査だけでなく,国際比較研究や東洋文化をcharacter strengthsの観点で記述する研究の展開が期待できる

    New Evidence Confirms That the Mitochondrial Bottleneck Is Generated without Reduction of Mitochondrial DNA Content in Early Primordial Germ Cells of Mice

    Get PDF
    In mammals, observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations have led to the creation of the bottleneck theory for the transmission of mtDNA. The bottleneck could be attributed to a marked decline of mtDNA content in germ cells giving rise to the next generation, to a small effective number of mtDNA segregation units resulting from homoplasmic nucleoids rather than the single mtDNA molecule serving as the units of segregation, or to the selective transmission of a subgroup of the mtDNA population to the progeny. We have previously determined mtDNA copy number in single germ cells and shown that the bottleneck occurs without the reduction in germline mtDNA content. Recently one study suggested that the bottleneck is driven by a remarkable decline of mtDNA copies in early primordial germ cells (PGCs), while another study reported that the mtDNA genetic bottleneck results from replication of a subpopulation of the mtDNA genome during postnatal oocyte maturation and not during embryonic oogenesis, despite a detected a reduction in mtDNA content in early PGCs. To clarify these contradictory results, we examined the mtDNA copy number in PGCs isolated from transgenic mice expressing fluorescent proteins specifically in PGCs as in the aforementioned two other studies. We provide clear evidence to confirm that no remarkable reduction in mtDNA content occurs in PGCs and reinforce that the bottleneck is generated without reduction of mtDNA content in germ cells

    Developing an Active Canopy Sensor-Based Integrated Precision Rice Management System for Improving Grain Yield and Quality, Nitrogen Use Efficiency, and Lodging Resistance

    Get PDF
    Active crop sensor-based precision nitrogen (N) management can significantly improve N use efficiency but generally does not increase crop yield. The objective of this research was to develop and evaluate an active canopy sensor-based precision rice management system in terms of grain yield and quality, N use efficiency, and lodging resistance as compared with farmer practice, regional optimum rice management system recommended by the extension service, and a chlorophyll meter-based precision rice management system. Two field experiments were conducted from 2011 to 2013 at Jiansanjiang Experiment Station of China Agricultural University in Heilongjiang, China, involving four rice management systems and two varieties (Kongyu 131 and Longjing 21). The results indicated that the canopy sensor-based precision rice management system significantly increased rice grain yield (by 9.4–13.5%) over the farmer practice while improving N use efficiency, grain quality, and lodging resistance. Compared with the already optimized regional optimum rice management system, in the cool weather year of 2011, the developed system decreased the N rate applied in Kongyu 131 by 12% and improved N use efficiency without inducing yield loss. In the warm weather year of 2013, the canopy sensor-based management system recommended an 8% higher N rate to be applied in Longjing 21 than the regional optimum rice management, which improved rice panicle number per unit area and eventually led to increased grain yield by over 10% and improved N use efficiency. More studies are needed to further test the developed active canopy sensor-based precision rice management system under more diverse on-farm conditions and further improve it using unmanned aerial vehicle or satellite remote sensing technologies for large-scale applications.publishedVersio

    Full-length transcriptome characterization of Platycladus orientalis based on the PacBio platform

    Get PDF
    As a unique and native conifer in China, Platycladus orientalis is widely used in soil erosion control, garden landscapes, timber, and traditional Chinese medicine. However, due to the lack of reference genome and transcriptome, it is limited to the further molecular mechanism research and gene function mining. To develop a full-length reference transcriptome, tissues from five different parts of P. orientalis and four cone developmental stages were sequenced and analyzed by single-molecule real-time (SMRT) sequencing through the PacBio platform in this study. Overall, 37,111 isoforms were detected by PacBio with an N50 length of 2,317 nt, an average length of 1,999 bp, and the GC content of 41.81%. Meanwhile, 36,120 coding sequences, 5,645 simple sequence repeats (SSRs), 1,201 non-coding RNAs (lncRNAs), and 182 alternative splicing (AS) events with five types were identified using the results obtained from the PacBio transcript isoforms. Furthermore, 1,659 transcription factors (TFs) were detected and belonged to 51 TF families. A total of 35,689 transcripts (96.17%) were annotated through the NCBI nr, KOG, Swiss-Prot and KEGG databases, and 385 transcript isoforms related to 8 types of hormones were identified incorporated into plant hormone signal transduction pathways. The assembly and revelation of the full-length transcriptome of P. orientalis offer a pioneering insight for future investigations into gene function and genetic breeding within Platycladus species

    Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime

    Get PDF
    Impacts on indoor air quality of dining areas from cooking activities were investigated in eight categories of commercial restaurants including Szechwan Hotpot, Hunan, Shaanxi Noodle, Chinese Barbecue, Chinese Vegetarian, Korean Barbecue, Italian, and Indian, in Northwestern China during December 2011 to January 2012. Chemical characterization and health risk assessment for airborne carbonyls, and particulate-bound polycyclic aromatic hydrocarbons (PAHs) and heavy metals were conducted under low ventilation conditions in wintertime. The highest total quantified carbonyls (Sigma(carbonyls)) concentration of 313.6 mu g m(-3) was found in the Chinese Barbecue, followed by the Szechwan Hotpot (222.6 mu g m(-3)) and Indian (221.9 mu g m(-3)) restaurants. However, the highest Sigma(carbonyls) per capita was found at the Indian restaurant (4500 mu g capita(-1)), suggesting that cooking methods such as stir-fly and bake for spices ingredients released more carbonyls from thermal cooking processes. Formaldehyde, acetaldehyde, and acetone were the three most abundant species, totally accounting for >60% of mass concentrations of the Sigma(carbonyls). Phenanthrene, chrysene, and benzo[a]anthracene were the three most abundant PAHs. Low molecular weight fraction (Sigma PAHs(<= 178)) had the highest contributions accounting for 40.6%-65.7%, much greater than their heaver counterparts. Diagnostic PAHs ratios suggest that cooking fuel and environmental tobacco smoke (ETS) contribute to the indoor PAHs profiles. Lead was the most abundant heavy metal in all sampled restaurants. High quantity of nickel was also found in samples due to the emissions from stainless-steel made kitchen utensils and cookware and ETS. Cancer risk assessments on the toxic substances demonstrate that the working environment of dining areas were hazard to health. Formation of reactive organic species (ROS) from the cooking activities was evidenced by measurement of hydroxyl radical (center dot OH) formed from simulating particulate matter (PM) react with surrogate lung fluid. The highest center dot OH concentration of 294.4 ng m(-3) was detected in Chinese Barbecue. In addition, the elevation of the concentrations of PM and center dot OH after non-dining periods implies that the significance of formation of oxidizing-active species indoor at poor ventilation environments. (c) 2018 Elsevier B.V. All rights reserved
    corecore