13 research outputs found

    Overview of recent Alcator C-Mod research

    No full text
    Research on the Alcator C-Mod tokamak [1] is focused on high particle- and power-density plasma regimes to understand particle and energy transport in the core, the dynamics of the H-mode pedestal, and scrape-off layer and divertor physics. The auxiliary heating is provided exclusively by RF waves, and both the physics and technology of RF heating and current drive are studied. The momentum which is manifested in strong toroidal rotation, in the absence of direct momentum input, has been shown to be transported in from the edge of the plasma following the L-H transition, with timescale comparable to that for energy transport. In discharges which develop internal transport barriers, the rotation slows first inside the barrier region, and then subsequently outside of the barrier foot. Heat pulse propagation studies using sawteeth indicate a very narrow region of strongly reduced energy transport, located near r/a = 0.5. Addition of on-axis ICRF heating arrests the buildup of density and impurities, leading to quasi-steady conditions. The quasi-coherent mode associated with enhanced D-Alpha (EDA) H-mode appears to be due to a resistive ballooning instability. As the pedestal pressure gradient and temperature are increased in EDA H-mode, small ELMs appear; detailed modelling indicates that these are due to intermediate n peeling-ballooning modes. Phase contrast imaging has been used to directly detect density fluctuations driven by ICRF waves in the core of the plasma, and mode conversion to an intermediate wavelength ion cyclotron wave has been observed for the first time. The bursty turbulent density fluctuations, observed to drive rapid cross-field particle transport in the edge plasma, appear to play a key role in the dynamics of the density limit. Preparations for quasi-steady-state advanced tokamak studies with lower hybrid current drive are well underway, and time dependent modelling indicates that regimes with high bootstrap fraction can be produced

    Overview of the Alcator C-Mod program

    No full text
    Research on the Alcator C-Mod tokamak has emphasized RF heating, self-generated flows, momentum transport, scrape-off layer (SOL) turbulence and transport and the physics of transport barrier transitions, stability and control. The machine operates with P-RF up to 6 MW corresponding to power densities on the antenna of 10 MW m(-2). Analysis of rotation profile evolution, produced in the absence of external drive, allows transport of angular momentum in the plasma core to be computed and compared between various operating regimes. Momentum is clearly seen diffusing and convecting from the plasma edge on time scales similar to the energy confinement time and much faster than neo-classical transport. SOL turbulence and transport have been studied with fast scanning electrostatic probes situated at several poloidal locations and with gas puff imaging. Strong poloidal asymmetries are found in profiles and fluctuations, confirming the essential ballooning character of the turbulence and transport. Plasma topology has a dominant effect on the magnitude and direction of both core rotation and SOL flows. The correlation of self-generated plasma flows and topology has led to a novel explanation for the dependence of the H-mode power threshold on the del B drift direction. Research into internal transport barriers has focused on control of the barrier strength and location. The foot of the barrier could be moved to larger minor radius by lowering q or B-T. The barriers, which are produced in C-Mod by off-axis RF heating, can be weakened by the application of on-axis power. Gyro-kinetic simulations suggest that the control mechanism is due to the temperature dependence of trapped electron modes which are destabilized by the large density gradients. A set of non-axisymmetric coils was installed allowing intrinsic error fields to be measured and compensated. These also enabled the determination of the mode locking threshold and, by comparison with data from other machines, provided the first direct measurement of size scaling for the threshold. The installation of a new inboard limiter resulted in the reduction of halo currents following disruptions. This effect can be understood in terms of the change in plasma contact with the altered geometry during vertical displacement of the plasma column. Unstable Alfven eigenmodes (AE) were observed in low-density, high-power ICRF heated plasmas. The damping rate of stable AEs was investigated with a pair of active MHD antennae

    Overview of recent Alcator C-Mod research

    No full text
    Research on the Alcator C-Mod tokamak [1] is focused on high particle- and power-density plasma regimes to understand particle and energy transport in the core, the dynamics of the H-mode pedestal, and scrape-off layer and divertor physics. The auxiliary heating is provided exclusively by RF waves, and both the physics and technology of RF heating and current drive are studied. The momentum which is manifested in strong toroidal rotation, in the absence of direct momentum input, has been shown to be transported in from the edge of the plasma following the L-H transition, with timescale comparable to that for energy transport. In discharges which develop internal transport barriers, the rotation slows first inside the barrier region, and then subsequently outside of the barrier foot. Heat pulse propagation studies using sawteeth indicate a very narrow region of strongly reduced energy transport, located near r/a = 0.5. Addition of on-axis ICRF heating arrests the buildup of density and impurities, leading to quasi-steady conditions. The quasi-coherent mode associated with enhanced D-Alpha (EDA) H-mode appears to be due to a resistive ballooning instability. As the pedestal pressure gradient and temperature are increased in EDA H-mode, small ELMs appear; detailed modelling indicates that these are due to intermediate n peeling-ballooning modes. Phase contrast imaging has been used to directly detect density fluctuations driven by ICRF waves in the core of the plasma, and mode conversion to an intermediate wavelength ion cyclotron wave has been observed for the first time. The bursty turbulent density fluctuations, observed to drive rapid cross-field particle transport in the edge plasma, appear to play a key role in the dynamics of the density limit. Preparations for quasi-steady-state advanced tokamak studies with lower hybrid current drive are well underway, and time dependent modelling indicates that regimes with high bootstrap fraction can be produced

    Overview of the Alcator C-Mod Research Program

    No full text
    This paper summarizes highlights of research results from the Alcator C-Mod tokamak covering the period 2006-2008. Active flow drive, using mode converted ion cyclotron waves, has been observed for the first time in a tokamak plasma, using a mix of D and He-3 ion species; toroidal and poloidal flows are driven near the location of the mode conversion layer. ICRF induced edge sheaths are implicated in both the erosion of thin boron coatings and the generation of metallic impurities. Lower hybrid range of frequencies (LHRF) microwaves have been used for efficient current drive, current profile modification and toroidal flow drive. In addition, LHRF has been used to modify the H-mode pedestal, increasing temperature, decreasing density and lowering the pedestal collisionality. Studies of hydrogen isotope retention in solid metallic plasma facing components reveal significantly higher retention than expected from ex situ laboratory studies; a model to explain the results, based on plasma/neutral induced lattice damage, has been developed and tested. During gas-puff mitigation of disruptions, induced MHD instabilities cause the magnetic field to become stochastic, resulting in reduction of halo currents, spreading of plasma power loading and loss of runaway electrons before they cause damage. Detailed pedestal rotation profile measurements have been used to infer E-r profiles, and correlation with global H-mode confinement. An improved L-mode regime, obtained at q(95) <= 3 with ion drift away from the active X-point, shows very good energy confinement with a strong temperature pedestal, a weak density pedestal, and no evidence of particle or impurity accumulation, without the need for ELMs or any additional edge density regulation mechanism
    corecore