52 research outputs found

    Short-Sale Constraints and Corporate Investment

    Get PDF
    In a sample of non-U.S. regulatory regime shifts, we find that expanded short selling is associated with stock price declines, reductions in capital expenditure, and lower asset growth. In a reversal of results found for U.S. stocks in a study of Regulation SHO by Grullon, Michenaud, and Weston (2015), our results are stronger for large firms than for small firms. We also show that this investment effect is stronger for firms that previously relied on outside financing. Our results suggest that short-sale policies affect corporate investment and that this effect is not driven by capital constraints

    Information, trading, and volatility

    Full text link
    We examine the effects of trading and information flows on the short-run behavior of stock prices by comparing the behavior of stock return volatility during trading and nontrading periods. We define nontrading periods as periods when exchanges and businesses are open but traders endogenously choose not to trade. After correcting for the bid/ask bounce and stickiness in quotes, we find that a large proportion of daily stock return volatility occurs without trades, especially for large firms. Furthermore, we provide new evidence that public (versus private) information is the major source of short-term return volatility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31397/1/0000312.pd

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Liquidity and Capital Structure

    No full text
    • …
    corecore