2,415 research outputs found

    Week 52 Influenza Forecast for the 2012-2013 U.S. Season

    Full text link
    This document is another installment in a series of near real-time weekly influenza forecasts made during the 2012-2013 influenza season. Here we present some of the results of forecasts initiated following assimilation of observations for Week 52 (i.e. the forecast begins December 30, 2012) for municipalities in the United States. The forecasts were made on January 4, 2013. Results from forecasts initiated the five previous weeks (Weeks 47-51) are also presented

    Generation interval contraction and epidemic data analysis

    Full text link
    The generation interval is the time between the infection time of an infected person and the infection time of his or her infector. Probability density functions for generation intervals have been an important input for epidemic models and epidemic data analysis. In this paper, we specify a general stochastic SIR epidemic model and prove that the mean generation interval decreases when susceptible persons are at risk of infectious contact from multiple sources. The intuition behind this is that when a susceptible person has multiple potential infectors, there is a ``race'' to infect him or her in which only the first infectious contact leads to infection. In an epidemic, the mean generation interval contracts as the prevalence of infection increases. We call this global competition among potential infectors. When there is rapid transmission within clusters of contacts, generation interval contraction can be caused by a high local prevalence of infection even when the global prevalence is low. We call this local competition among potential infectors. Using simulations, we illustrate both types of competition. Finally, we show that hazards of infectious contact can be used instead of generation intervals to estimate the time course of the effective reproductive number in an epidemic. This approach leads naturally to partial likelihoods for epidemic data that are very similar to those that arise in survival analysis, opening a promising avenue of methodological research in infectious disease epidemiology.Comment: 20 pages, 5 figures; to appear in Mathematical Bioscience

    Techniques for Providing Outstanding Customer Service

    Full text link
    Providing exceptional customer service should be one of the primary goals for all academic libraries. However, with the day- to- day interruptions, librarians sometimes forget all about customer service. By developing a Customer Service Task Force, Penfield Library has been able to develop a number of projects in the past two years to greatly improve its reputation. Such methods as surveys and small and large focus groups were conducted to determine what projects needed to be addressed. Tips and tricks to providing quality customer service in a small college/university library are also presented

    Ethical Alternatives to Experiments with Novel Potential Pandemic Pathogens

    Get PDF
    Please see later in the article for the Editors' Summar

    Targeting Imperfect Vaccines against Drug-Resistance Determinants: A Strategy for Countering the Rise of Drug Resistance

    Get PDF
    The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. –sensitive strains population-wide for three pathogens – Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus – in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8%) against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains). Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak
    corecore