11 research outputs found

    O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis

    Get PDF
    Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases

    Predicting mortality in the intensive care unit: a comparison of the University Health Consortium expected probability of mortality and the Mortality Prediction Model III.

    Get PDF
    BackgroundQuality benchmarks are increasingly being used to compare the delivery of healthcare, and may affect reimbursement in the future. The University Health Consortium (UHC) expected probability of mortality (EPM) is one such quality benchmark. Although the UHC EPM is used to compare quality across UHC members, it has not been prospectively validated in the critically ill. We aimed to define the performance characteristics of the UHC EPM in the critically ill and compare its ability to predict mortality with the Mortality Prediction Model III (MPM-III).MethodsThe first 100 consecutive adult patients discharged from the hospital (including deaths) each quarter from January 1, 2009 until September 30, 2011 that had an intensive care unit (ICU) stay were included. We assessed model discrimination, calibration, and overall performance, and compared the two models using Bland-Altman plots.ResultsEight hundred ninety-one patients were included. Both the UHC EPM and the MPM-III had excellent performance (Brier score 0.05 and 0.06, respectively). The area under the curve was good for both models (UHC 0.90, MPM-III 0.87, p = 0.28). Goodness of fit was statistically significant for both models (UHC p = 0.002, MPM-III p = 0.0003), but improved with logit transformation (UHC p = 0.41; MPM-III p = 0.07). The Bland-Altman plot showed good agreement at extremes of mortality, but agreement diverged as mortality approached 50 %.ConclusionsThe UHC EPM exhibited excellent overall performance, calibration, and discrimination, and performed similarly to the MPM-III. Correlation between the two models was poor due to divergence when mortality was maximally uncertain

    O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis

    Full text link
    Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases
    corecore