299 research outputs found

    Anisotropic Neutron Spin Resonance in Superconducting BaFe1.9_{1.9}Ni0.1_{0.1}As2_2

    Get PDF
    We use polarized inelastic neutron scattering to show that the neutron spin resonance below TcT_c in superconducting BaFe1.9_{1.9}Ni0.1_{0.1}As2_2 (Tc=20T_c=20 K) is purely magnetic in origin. Our analysis further reveals that the resonance peak near 7~meV only occurs for the planar response. This challenges the common perception that the spin resonance in the pnictides is an isotropic triplet excited state of the singlet Cooper pairs, as our results imply that only the S001=±1S_{001}=\pm1 components of the triplet are involved

    Spin density wave induced disordering of the vortex lattice in superconducting La2−x_{2-x}Srx_xCuO4_4

    Full text link
    We use small angle neutron scattering to study the superconducting vortex lattice in La2−x_{2-x}Srx_xCuO4_4 as a function of doping and magnetic field. We show that near optimally doping the vortex lattice coordination and the superconducting coherence length ξ\xi are controlled by a van-Hove singularity crossing the Fermi level near the Brillouin zone boundary. The vortex lattice properties change dramatically as a spin-density-wave instability is approached upon underdoping. The Bragg glass paradigm provides a good description of this regime and suggests that SDW order acts as a novel source of disorder on the vortex lattice.Comment: Accepted in Phys. Rev.

    Electronic and Magnetic Structures of Chain Structured Iron Selenide Compounds

    Full text link
    Electronic and magnetic structures of iron selenide compounds Ce2O2FeSe2 (2212\ast) and BaFe2Se3(123\ast) are studied by the first-principles calculations. We find that while all these compounds are composed of one-dimensional (1D) Fe chain (or ladder) structures, their electronic structures are not close to be quasi-1D. The magnetic exchange couplings between two nearest-neighbor (NN) chains in 2212\ast and between two NN two-leg-ladders in 123\ast are both antiferromagnetic (AFM), which is consistent with the presence of significant third NN AFM coupling, a common feature shared in other iron-chalcogenides, FeTe (11\ast) and KyFe2-xSe2 (122\ast). In magnetic ground states, each Fe chain of 2212\ast is ferromagnetic and each two-leg ladder of 123\ast form a block-AFM structure. We suggest that all magnetic structures in iron-selenide compounds can be unified into an extended J1-J2-J3 model. Spin-wave excitations of the model are calculated and can be tested by future experiments on these two systems.Comment: 6 pages, 6 figures, 2 table

    Norwich COVID-19 testing initiative pilot: evaluating the feasibility of asymptomatic testing on a university campus

    Get PDF
    Background: There is a high prevalence of COVID-19 in university-age students, who are returning to campuses. There is little evidence regarding the feasibility of universal, asymptomatic testing to help control outbreaks in this population. This study aimed to pilot mass COVID-19 testing on a university research park, to assess the feasibility and acceptability of scaling up testing to all staff and students. Methods: This was a cross-sectional feasibility study on a university research park in the East of England. All staff and students (5625) were eligible to participate. All participants were offered four PCR swabs, which they self-administered over two weeks. Outcome measures included uptake, drop-out rate, positivity rates, participant acceptability measures, laboratory processing measures, data collection and management measures. Results: 798 (76%) of 1053 who registered provided at least one swab; 687 (86%) provided all four; 792 (99%) of 798 who submitted at least one swab had all negative results and 6 participants had one inconclusive result. There were no positive results. 458 (57%) of 798 participants responded to a post-testing survey, demonstrating a mean acceptability score of 4.51/5, with five being the most positive. Conclusions: Repeated self-testing for COVID-19 using PCR is feasible and acceptable to a university population

    Progress in Neutron Scattering Studies of Spin Excitations in High-Tc Cuprates

    Full text link
    Neutron scattering experiments continue to improve our knowledge of spin fluctuations in layered cuprates, excitations that are symptomatic of the electronic correlations underlying high-temperature superconductivity. Time-of-flight spectrometers, together with new and varied single crystal samples, have provided a more complete characterization of the magnetic energy spectrum and its variation with carrier concentration. While the spin excitations appear anomalous in comparison with simple model systems, there is clear consistency among a variety of cuprate families. Focusing initially on hole-doped systems, we review the nature of the magnetic spectrum, and variations in magnetic spectral weight with doping. We consider connections with the phenomena of charge and spin stripe order, and the potential generality of such correlations as suggested by studies of magnetic-field and impurity induced order. We contrast the behavior of the hole-doped systems with the trends found in the electron-doped superconductors. Returning to hole-doped cuprates, studies of translation-symmetry-preserving magnetic order are discussed, along with efforts to explore new systems. We conclude with a discussion of future challenges.Comment: revised version, to be published in JPSJ, 20 pages, 21 figure

    Optimal strategy to identify incidence of diagnostic of diabetes using administrative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate estimates of incidence and prevalence of the disease is a vital step toward appropriate interventions for chronic disease like diabetes. A growing body of scientific literature is now available on producing accurate information from administrative data. Advantages of use of administrative data to determine disease incidence include feasibility, accessibility and low cost, but straightforward use of administrative data can produce biased information on incident cases of chronic disease like diabetes. The present study aimed to compare criteria for the selection of diabetes incident cases in a medical administrative database.</p> <p>Methods</p> <p>An exhaustive retrospective cohort of diabetes cases was constructed for 2002 using the Canadian National Diabetes Surveillance System case definition (one hospitalization or two physician claims with a diagnosis of diabetes over a 2-year period) with the Quebec health service database. To identify previous occurrence of diabetes in the database, a five-year observation period was evaluated using retrograde survival function and kappa agreement. The use of NDSS case definition to identify incident cases was compared to a single occurrence of an ICD-9 code 250 in the records using the McNemar test.</p> <p>Results</p> <p>Retrograde survival function showed that the probability of being a true incident case after a 5-year diabetes-free observation period was almost constant and near 0.14. Agreement between 10 years (maximum period) and 5 years and more diabetes-free observation periods were excellent (kappa > 0.9). Respectively 41,261 and 37,473 incident cases were identified using a 5-year diabetes-free observation period with NDSS definition and using a single ICD-9 code 250.</p> <p>Conclusion</p> <p>A 5-year diabetes-free observation period was a conservative time to identify incident cases in an administrative database using one ICD-9 code 250 record.</p

    Structural, Magnetic and Electronic Properties of the Iron-Chalcogenide Ax_xFe2−y_{2-y}Se2_2 (A=K, Cs, Rb, Tl and etc.) Superconductors

    Full text link
    The latest discovery of a new iron-chalcogenide superconductor Ax_xFe2−y_{2-y}Se2_2(A=K, Cs, Rb, Tl and etc.) has attracted much attention due to a number of its unique characteristics, such as the possible insulating state of the parent compound, the existence of Fe-vacancy and its ordering, a new form of magnetic structure and its interplay with superconductivity, and the peculiar electronic structures that are distinct from other Fe-based superconductors. In this paper, we present a brief review on the structural, magnetic and electronic properties of this new superconductor, with an emphasis on the electronic structure and superconducting gap. Issues and future perspectives are discussed at the end of the paper.Comment: 45 pages, 19 figure
    • …
    corecore