332 research outputs found
Miocene hominoids from Pakistan
Remains of hominoid primates collected by Yale Peabody Museum - Geological Survey of Pakistan expeditions to the Siwalik Group rocks of the Potwar Plateau, Pakistan, are described. They consist of facial, gnathic, dental, and postcranial remains of Ramapithecus, Sivapithecus, and Gigantopithecus. They are discussed anatomically and without precise taxonomic attributions. The hominoids come from 24 localities, the majority being around eight million years old. The depositional environments of 21 hominoid localities are documented in the form of microstratigraphic sections. These sections depict depositional and postdepositional features that are necessary for interpreting the facies of fossiliferous horizons. Within the predominantly fluvial Siwalik Group sediments, a three-fold division of facies is convenient for distinguishing certain taphonomic influences on hominoid and other vertebrate fossils. These facies are 1) channel, 2) channel margin, and 3) floodplain. A locality consists of one or more fossiliferous horizons, and thus one or more facies may be represented. Interpretations of the facies represented at each locality accompany the microstratigraphic sections
Recommended from our members
Spectra over complex terrain
Spectra have been measured over land downwind of a water surface, over hilltops and escarpments, and over rolling farmland. The following hypotheses can be used to explain the differences between these spectra. (1) For wavelengths short compared to the fetch over the new terrain, spectral densities are in equilibrium with the new terrain. (2) For wavelengths long compared to this fetch, spectral densities remain unchanged if the ground is horizontal. If the flow is over a steep hill, the low-frequency structure is modified by distortion of the mean flow, with the longitudinal component losing energy relative to the lateral and vertical components. Because vertical-velocity spectra contain relatively less low-frequency energy than horizontal-velocity spectra, energetic vertical-velocity fluctuations tend to be in equilibrium with local terrain
Al-26 production profile and model comparisons in Canyon Diablo
The large preatmospheric size of the Canyon Diablo meteorite, a radius of about 15 m, makes it especially suitable for systematic studies of cosmogenic nuclide production rates of iron objects in a 2 pi geometry. To reconstruct the exposure history of the meteoroid, Heymann et al. investigated several fragments recovered from known geographic locations around the crater for their shock features and cosmogenic nobel gases. They applied the Signer-Nier noble gas production rate model to establish the preatmospheric depth of the specimens in the meteoroid. Cosmic ray exposure ages suggested a multi-episodic irradiation, with 170 or 540 Ma being inferred for most of the samples studied while two anomalous specimens indicated a possible third exposure age at 940 Ma. Be-10 and Cl-36 have been measured in a number of these same samples by accelerator mass spectrometry (AMS), with use being made of the preatmospheric depths determined in Heymann et al. to construct production profiles. The present study extends the cosmogenic radionuclide data to Al-26 and compares the results with both the production rate model of Reedy and Arnold and production rates determined from the cross sections used by the Reedy-Arnold model (for the major nuclear reactions making Al-26) in combination with differential fluxes calculated using the Los Alamos High Energy Transport (LAHET) Code System. Model calculations for Be-10 and Cl-36 have also been obtained
Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes
In the present paper the determination of the {\it pp}-wave metric form the
geometry of certain spacelike two-surfaces is considered. It has been shown
that the vanishing of the Dougan--Mason quasi-local mass , associated
with the smooth boundary of a spacelike
hypersurface , is equivalent to the statement that the Cauchy
development is of a {\it pp}-wave type geometry with pure
radiation, provided the ingoing null normals are not diverging on and the
dominant energy condition holds on . The metric on
itself, however, has not been determined. Here, assuming that the matter is a
zero-rest-mass-field, it is shown that both the matter field and the {\it
pp}-wave metric of are completely determined by the value of the
zero-rest-mass-field on and the two dimensional Sen--geometry of
provided a convexity condition, slightly stronger than above, holds. Thus the
{\it pp}-waves can be characterized not only by the usual Cauchy data on a {\it
three} dimensional but by data on its {\it two} dimensional boundary
too. In addition, it is shown that the Ludvigsen--Vickers quasi-local
angular momentum of axially symmetric {\it pp}-wave geometries has the familiar
properties known for pure (matter) radiation.Comment: 15 pages, Plain Tex, no figure
Metamorphism and aqueous alteration in low petrographic type ordinary chondrites
In order to investigate the relative importance of dry metamorphism and aqueous alteration in the history of chondruies, chondruies were hand-picked from the Semarkona (petrographic type 3.0), Bishunpur (3. 1), Chainpur (3.4), Dhajala (3.8) and Allegan (5) chondrites, and matrix samples were extracted from the first three ordinary chondrites. The thermoluminescence (TL) properties of all the samples were measured, and appropriate subsets of the samples were analyzed by electron-microprobe and radiochemical neutron activation and the water and H-isotopic composition determined. The TL data for chondrules from Semarkona and Bishunpur scatter widely showing no unambiguous trends, although group B1 chondrules tend to have lower sensitivities and lower peak temperatures compared with group A5 chondrules. It is argued that these data reflect the variety of processes accompanying chondrule formation. The chondrules show remarkably uniform contents of the highly labile elements, indicating mineralogical control on abundance and volatile loss from silicates and loss and recondensation of mobile chalcophiles and siderophiles in some cases. Very high D/H values (up to approx. 8000% SMOW) are observed in certain Semarkona chondrules, a confirmation of earlier work. With increasing petrographic type, mean TL sensitivities of the chondrules increase, the spread of values within an individual meteorite decreases, and peak temperatures and peak widths show trends indicating that the TL is mainly produced by feldspar and that dry, thermal metamorphism is the dominant secondary process experienced by the chondrules. The TL sensitivities of matrix samples also increase with petrographic type. Chainpur matrix samples show the same spread of peak temperatures and peak widths as Chainpur chondruies, indicating metamorphism-related changes in the feldspar are responsible for the TL of the matrix. The TL data for the Semarkona and Bishunpur matrix samples provide, at best, only weak evidence for aqueous alteration, but the matrix contains H with approximately terrestrial D/H values, even though it contains much water. Secondary processes (probably aqueous alteration) presumably lowered the D/H of the matrix and certain chondrules. While chondrule properties appear to be governed primarily by formation processes and subsequent metamorphism, the matrix of Semarkona has a more complex history involving aqueous alteration as a meteorite-wide process
- …