374 research outputs found

    Medical treatment of vertebral osteoporosis

    Get PDF
    Although osteoporosis is a systemic disease, vertebral fractures due to spinal bone loss are a frequent, sometimes early and often neglected complication of the disease, generally associated with considerable disability and pain. As osteoporotic vertebral fractures are an important predictor of future fracture risk, including at the hip, medical management is targeted at reducing fracture risk. A literature search for randomized, double-blind, prospective, controlled clinical studies addressing medical treatment possibilities of vertebral fractures in postmenopausal Caucasian women was performed on the leading medical databases. For each publication, the number of patients with at least one new vertebral fracture and the number of randomized patients by treatment arm was retrieved. The relative risk (RR) and the number needed to treat (NNT, i.e. the number of patients to be treated to avoid one radiological vertebral fracture over the duration of the study), together with the respective 95% confidence intervals (95%CI) were calculated for each study. Treatment of steroid-induced osteoporosis and treatment of osteoporosis in men were reviewed separately, based on the low number of publications available. Forty-five publications matched with the search criteria, allowing for analysis of 15 different substances tested regarding their anti-fracture efficacy at the vertebral level. Bisphosphonates, mainly alendronate and risedronate, were reported to have consistently reduced the risk of a vertebral fracture over up to 50 months of treatment in four (alendronate) and two (risedronate) publications. Raloxifene reduced vertebral fracture risk in one study over 36 months, which was confirmed by 48 months' follow-up data. Parathormone (PTH) showed a drastic reduction in vertebral fracture risk in early studies, while calcitonin may also be a treatment option to reduce fracture risk. For other substances published data are conflicting (calcitriol, fluoride) or insufficient to conclude about efficacy (calcium, clodronate, etidronate, hormone replacement therapy, pamidronate, strontium, tiludronate, vitamin D). The low NNTs for the leading substances (ranges: 15-64 for alendronate, 8-26 for risedronate, 23 for calcitonin and 28-31 for raloxifene) confirm that effective and efficient drug interventions for treatment and prevention of osteoporotic vertebral fractures are available. Bisphosphonates have demonstrated similar efficacy in treatment and prevention of steroid-induced and male osteoporosis as in postmenopausal osteoporosis. The selection of the appropriate drug for treatment of vertebral osteoporosis from among a bisphosphonate (alendronate or risedronate), PTH, calcitonin or raloxifene will mainly depend on the efficacy, tolerability and safety profile, together with the patient's willingness to comply with a long-term treatment. Although reduction of vertebral fracture risk is an important criterion for decision making, drugs with proven additional fracture risk reduction at all clinically relevant sites (especially at the hip) should be the preferred option

    Simulation-based cost-utility analysis of population screening-based alendronate use in Switzerland

    Get PDF
    Summary: A simulation model adopting a health system perspective showed population-based screening with DXA, followed by alendronate treatment of persons with osteoporosis, or with anamnestic fracture and osteopenia, to be cost-effective in Swiss postmenopausal women from age 70, but not in men. Introduction: We assessed the cost-effectiveness of a population-based screen-and-treat strategy for osteoporosis (DXA followed by alendronate treatment if osteoporotic, or osteopenic in the presence of fracture), compared to no intervention, from the perspective of the Swiss health care system. Methods: A published Markov model assessed by first-order Monte Carlo simulation was refined to reflect the diagnostic process and treatment effects. Women and men entered the model at age 50. Main screening ages were 65, 75, and 85years. Age at bone densitometry was flexible for persons fracturing before the main screening age. Realistic assumptions were made with respect to persistence with intended 5years of alendronate treatment. The main outcome was cost per quality-adjusted life year (QALY) gained. Results: In women, costs per QALY were Swiss francs (CHF) 71,000, CHF 35,000, and CHF 28,000 for the main screening ages of 65, 75, and 85years. The threshold of CHF 50,000 per QALY was reached between main screening ages 65 and 75years. Population-based screening was not cost-effective in men. Conclusion: Population-based DXA screening, followed by alendronate treatment in the presence of osteoporosis, or of fracture and osteopenia, is a cost-effective option in Swiss postmenopausal women after age 7

    FRAX® assessment of osteoporotic fracture probability in Switzerland

    Get PDF
    Summary: A Swiss-specific FRAX® model was developed. Patient profiles at increased probability of fracture beyond currently accepted reimbursement thresholds for bone mineral density (BMD) measurement by dual X-ray absorptiometry (DXA), and osteoporosis treatment were identified. Introduction: This study aimed to determine which constellations of clinical risk factors, alone, or combined with BMD measurement by DXA, contribute to improved identification of Swiss patients with increased probability of fracture. Methods: The 10-year probability of hip and any major osteoporotic fracture was computed for both sexes, based on Swiss epidemiological data, integrating fracture risk and death hazard, in relation to validated clinical risk factors, with and without BMD values. Results: Fracture probability increased with age, lower body mass index (BMI), decreasing BMD T-score, and all clinical risk factors used alone or combined. Several constellations of risk factor profiles were identified, indicating identical or higher absolute fracture probability than risk factors currently accepted for DXA reimbursement in Switzerland. With identical sex, age and BMI, subjects with parental history of hip fracture had as high a probability of any major osteoporotic fracture as patients on oral glucocorticoids or with a prevalent fragility fracture. The presence of additional risk factors further increased fracture probability. Conclusions: The customised FRAX® model indicates that a shift from the current DXA-based intervention paradigm, toward a fracture risk continuum based on the 10-year probability of any major osteoporotic fracture may improve identification of patients at increased fracture ris

    Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women

    Get PDF
    Summary: Remaining lifetime and absolute 10-year probabilities for osteoporotic fractures were determined by gender, age, and BMD values. Remaining lifetime probability at age 50years was 20.2% in men and 51.3% in women and increased with advancing age and decreasing BMD. The study validates the elements required to populate a Swiss-specific FRAX® model. Introduction: Switzerland belongs to high-risk countries for osteoporosis. Based on demographic projections, burden will still increase. We assessed remaining lifetime and absolute 10-year probabilities for osteoporotic fractures by gender, age and BMD in order to populate FRAX® algorithm for Switzerland. Methods: Osteoporotic fracture incidence was determined from national epidemiological data for hospitalised fractured patients from the Swiss Federal Office of Statistics in 2000 and results of a prospective Swiss cohort with almost 5,000 fractured patients in 2006. Validated BMD-associated fracture risk was used together with national death incidence and risk tables to determine remaining lifetime and absolute 10-year fracture probabilities for hip and major osteoporotic (hip, spine, distal radius, proximal humerus) fractures. Results: Major osteoporotic fractures incidence was 773 and 2,078 per 100,000 men and women aged 50 and older. Corresponding remaining lifetime probabilities at age 50 were 20.2% and 51.3%. Hospitalisation for clinical spine, distal radius, and proximal humerus fractures reached 25%, 30% and 50%, respectively. Absolute 10-year probability of osteoporotic fracture increased with advancing age and decreasing BMD and was higher in women than in men. Conclusion: This study validates the elements required to populate a Swiss-specific FRAX® model, a country at highest risk for osteoporotic fracture

    Cost-effective intervention thresholds against osteoporotic fractures based on FRAX® in Switzerland

    Get PDF
    Summary: FRAX-based cost-effective intervention thresholds in the Swiss setting were determined. Assuming a willingness to pay at 2× Gross Domestic Product per capita, an intervention aimed at reducing fracture risk in women and men with a 10-year probability for a major osteoporotic fracture at or above 15% is cost-effective. Introduction: The fracture risk assessment algorithm FRAX® has been recently calibrated for Switzerland. The aim of the present analysis was to determine FRAX-based fracture probabilities at which intervention becomes cost-effective. Methods: A previously developed and validated state transition Markov cohort model was populated with Swiss epidemiological and cost input parameters. Cost-effective FRAX-based intervention thresholds (cost-effectiveness approach) and the cost-effectiveness of intervention with alendronate (original molecule) in subjects with a FRAX-based fracture risk equivalent to that of a woman with a prior fragility fracture and no other risk factor (translational approach) were calculated based on the Swiss FRAX model and assuming a willingness to pay of 2 times Gross Domestic Product per capita for one Quality-adjusted Life-Year. Results: In Swiss women and men aged 50years and older, drug intervention aimed at decreasing fracture risk was cost-effective with a 10-year probability for a major osteoporotic fracture at or above 13.8% (range 10.8% to 15.0%) and 15.1% (range 9.9% to 19.9%), respectively. Age-dependent variations around these mean values were modest. Using the translational approach, treatment was cost-effective or cost-saving after the age 60years in women and 55 in men who had previously sustained a fragility fracture. Using the latter approach leads to considerable underuse of the current potential for cost-effective interventions against fractures. Conclusions: Using a FRAX-based intervention threshold of 15% for both women and men should permit cost-effective access to therapy to patients at high fracture probability based on clinical risk factors and thereby contribute to further reduce the growing burden of osteoporotic fractures in Switzerlan

    Eccentric endurance training in subjects with coronary artery disease: a novel exercise paradigm in cardiac rehabilitation?

    Get PDF
    This study evaluated the effects of 8weeks of eccentric endurance training (EET) in male subjects (age range 42-66years) with coronary artery disease (CAD). EET was compared to concentric endurance training (CET) carried out at the same metabolic exercise intensity, three times per week for half an hour. CET (n=6) was done on a conventional cycle ergometer and EET (n=6) on a custom-built motor-driven ergometer. During the first 5weeks of the training program the metabolic load was progressively increased to 60% of peak oxygen uptake in both groups. At this metabolic load, mechanical work rate achieved was 97 (8)W [mean (SE)] for CET and 338 (34)W for EET, respectively. Leg muscle mass was determined by dual-energy X-ray absorptiometry, quadriceps strength with an isokinetic dynamometer and muscle fibre composition of the vastus lateralis muscle with morphometry. The leg muscle mass increased significantly in both groups by some 3%. Strength parameters of knee extensors improved in EET only. Significant changes of +11 (4.9)%, +15 (3.2)% and +9 (2.5)% were reached for peak isometric torque and peak concentric torques at 60°s−1 and 120°s−1, respectively. Fibre size increased significantly by 19% in CET only. In conclusion, the present investigation showed that EET is feasible in middle-aged CAD patients and has functional advantages over CET by increasing muscle strength. Muscle mass increased similarly in both groups whereas muscle structural composition was differently affected by the respective training protocols. Potential limitations of this study are the cautiously chosen conditioning protocol and the restricted number of subject

    Postpartum osteoporosis associated with proximal tibial stress fracture

    Get PDF
    A 33-year-old woman presented with acute nonspecific knee pain, 6months postpartum. MR imaging, computed tomography and radiography were performed and a proximal tibia plateau insufficiency fracture was detected. Bone densitometry demonstrated mild postpartum osteoporosis. To our knowledge these findings have not been described in this location and in this clinical setting. The etiology of the atraumatic fracture of the tibia is presumed to be due to a low bone mineral density. The bone loss was probably due to pregnancy, lactation and postpartum hormonal changes. There were no other inciting causes and the patient was normocalcemic. We discuss the presence of a postpartum stress fracture in a hitherto undescribed site in a patient who had lactated following an uncomplicated pregnancy and had no other identifiable cause for a stress fractur

    Reference values and clinical predictors of bone strength for HR-pQCT-based distal radius and tibia strength assessments in women and men.

    Get PDF
    Reference values for radius and tibia strength using multiple-stack high-resolution peripheral quantitative computed tomography (HR-pQCT) with homogenized finite element analysis are presented in order to derive critical values improving risk prediction models of osteoporosis. Gender and femoral neck areal bone mineral density (aBMD) were independent predictors of bone strength. INTRODUCTION The purpose was to obtain reference values for radius and tibia bone strength computed by using the homogenized finite element analysis (hFE) using multiple stacks with a HR-pQCT. METHODS Male and female healthy participants aged 20-39 years were recruited at the University Hospital of Bern. They underwent interview and clinical examination including hand grip, gait speed and DXA of the hip. The nondominant forearm and tibia were scanned with a double and a triple-stack protocol, respectively, using HR-pQCT (XCT II, SCANCO Medical AG). Bone strength was estimated by using the hFE analysis, and reference values were calculated using quantile regression. Multivariable analyses were performed to identify clinical predictors of bone strength. RESULTS Overall, 46 women and 41 men were recruited with mean ages of 25.1 (sd 5.0) and 26.2 (sd 5.2) years. Sex-specific reference values for bone strength were established. Men had significantly higher strength for radius (mean (sd) 6640 (1800) N vs. 4110 (1200) N; p < 0.001) and tibia (18,200 (4220) N vs. 11,970 (3150) N; p < 0.001) than women. In the two multivariable regression models with and without total hip aBMD, the addition of neck hip aBMD significantly improved the model (p < 0.001). No clinical predictors of bone strength other than gender and aBMD were identified. CONCLUSION Reference values for radius and tibia strength using multiple HR-pQCT stacks with hFE analysis are presented and provide the basis to help refining accurate risk prediction models. Femoral neck aBMD and gender were significant predictors of bone strength

    Hospitalizations for major osteoporotic fractures in Switzerland: a long-term trend analysis between 1998 and 2018.

    Get PDF
    Between 1998 and 2018, the number of hospitalizations for major osteoporotic fractures increased. After standardization for age, these numerical increases translated into a reduced incidence of hospitalizations for hip fractures and an increased incidence of hospitalizations for spine, proximal humerus, and distal radius fractures in both sexes. INTRODUCTION The longterm epidemiological trends of hospitalizations for major osteoporotic fractures (MOF) between 1998 and 2018 in Switzerland are unknown. METHODS The absolute number of acute hospitalizations for MOF (hip fractures and fractures of the spine, proximal humerus, and distal radius) and related length of acute hospital stay were extracted from the medical database of the Swiss Federal Office of Statistics. Age-standardized incidence rates were calculated using 1998 as the reference year. RESULTS Hospitalizations for MOF increased from 4483 to 7542 (+ 68.2%) in men and from 13,242 to 19,362 (+ 46.2%) in women. The age-standardized incidence of hospitalizations for MOF increased by 5.7% in men (p = 0.002) and by 5.1% in women (p = 0.018). The age-standardized incidence of hip fractures decreased by 15.3% in men (p < 0.001) and by 21.5% in women (p < 0.001). In parallel, the age-standardized incidence of MOF other than hip fractures increased by 31.8% in men (p < 0.001) and by 40.1% in women (p < 0.001). The mean length of acute hospital stays for MOF decreased from 16.3 to 8.5 days in men and from 16.9 to 8.1 days in women. CONCLUSION Between 1998 and 2018, the number of hospitalizations for MOF increased significantly by a larger extent than expected based on the ageing of the Swiss population alone. This increase was solely driven by an increased incidence of MOF other than hip fractures as incident hip fractures decreased over time in both sexes, more so in women than in men

    Tibial or hip BMD predict clinical fracture risk equally well: results from a prospective study in 700 elderly Swiss women

    Get PDF
    Summary: In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 ± 0.6years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures. Introduction: A study was carried out to determine whether BMD measurement at the distal tibia sites of T-EPI and T-DIA is predictive of clinical fracture risk. Methods: In a predefined representative cohort of Swiss community-dwelling elderly women aged 70-80years included in the prospective, multi-centre Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture risk (SEMOF) study, fracture risk profile was assessed and BMD measured at the lumbar spine (LS), hip (HIP) and tibia (T-DIA and T-EPI) using DXA. Thereafter, clinical fractures were reported in a bi-yearly questionnaire. Results: During 1,786 women-years of follow-up, 68 clinical fragility fractures occurred in 61 women. Older age and previous fracture were identified as risk factors for the present fractures. A decrease of 1 standard deviation in BMD values yielded a 1.5-fold (HIP) to 1.8-fold (T-EPI) significant increase in clinical fragility fracture hazard ratio (adjusted for age and previous fracture). All measured sites had comparable performance for fracture prediction (area under the curve range from 0.63 [LS] to 0.68 [T-EPI]). Conclusion: Fracture risk prediction with BMD measurements at T-DIA and T-EPI is a valid alternative to BMD measurements at LS or HIP for patients in whom these sites cannot be accessed for clinical, technical or practical reason
    corecore