111 research outputs found

    Particulate matter neurotoxicity in culture is size-dependent

    Get PDF
    Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum

    Associations between Health Effects and Particulate Matter and Black Carbon in Subjects with Respiratory Disease

    Get PDF
    We measured fractional exhaled nitric oxide (FE(NO)), spirometry, blood pressure, oxygen saturation of the blood (SaO(2)), and pulse rate in 16 older subjects with asthma or chronic obstructive pulmonary disease (COPD) in Seattle, Washington. Data were collected daily for 12 days. We simultaneously collected PM(10) and PM(2.5) (particulate matter ≤10 μm or ≤2.5 μm, respectively) filter samples at a central outdoor site, as well as outside and inside the subjects’ homes. Personal PM(10) filter samples were also collected. All filters were analyzed for mass and light absorbance. We analyzed within-subject associations between health outcomes and air pollution metrics using a linear mixed-effects model with random intercept, controlling for age, ambient relative humidity, and ambient temperature. For the 7 subjects with asthma, a 10 μg/m(3) increase in 24-hr average outdoor PM(10) and PM(2.5) was associated with a 5.9 [95% confidence interval (CI), 2.9–8.9] and 4.2 ppb (95% CI, 1.3–7.1) increase in FE(NO), respectively. A 1 μg/m(3) increase in outdoor, indoor, and personal black carbon (BC) was associated with increases in FE(NO) of 2.3 ppb (95% CI, 1.1–3.6), 4.0 ppb (95% CI, 2.0–5.9), and 1.2 ppb (95% CI, 0.2–2.2), respectively. No significant association was found between PM or BC measures and changes in spirometry, blood pressure, pulse rate, or SaO(2) in these subjects. Results from this study indicate that FE(NO) may be a more sensitive marker of PM exposure than traditional health outcomes and that particle-associated BC is useful for examining associations between primary combustion constituents of PM and health outcomes

    Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model.</p> <p>Methods</p> <p>Male ApoE knockout (ApoE<sup>-/-</sup>) mice inhaled concentrated fine ambient PM (PM < 2.5 μm in aerodynamic diameter; PM<sub>2.5</sub>) or filtered air (FA) for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM<sub>2.5 </sub>exposure in different adipose depots of ApoE<sup>-/- </sup>mice to understand responses to chronic inhalational stimuli.</p> <p>Results</p> <p>Exposure to PM<sub>2.5 </sub>induced an increase in the production of reactive oxygen species (ROS) in brown adipose depots. Additionally, exposure to PM<sub>2.5 </sub>decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT) and brown adipose tissues (BAT), while mitochondrial size was also reduced in BAT. In BAT, PM<sub>2.5 </sub>exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated.</p> <p>Conclusions</p> <p>PM<sub>2.5 </sub>exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM<sub>2.5 </sub>may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.</p

    Repeated measures of inflammation, blood pressure, and heart rate variability associated with traffic exposures in healthy adults

    Get PDF
    Abstract Background Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic locations while looking at a vast array of health endpoints in the same population. We evaluated inflammatory markers, heart rate variability (HRV), blood pressure, exhaled nitric oxide, and lung function in healthy participants after exposures to varying mixtures of traffic pollutants. Methods A repeated-measures, crossover study design was used in which 23 healthy, non-smoking adults had clinical cardiopulmonary and systemic inflammatory measurements taken prior to, immediately after, and 24 hours after intermittent walking for two hours in the summer months along three diverse roadways having unique emission characteristics. Measurements of PM2.5, PM10, black carbon (BC), elemental carbon (EC), and organic carbon (OC) were collected. Mixed effect models were used to assess changes in health effects associated with these specific pollutant classes. Results Minimal associations were observed with lung function measurements and the pollutants measured. Small decreases in BP measurements and rMSSD, and increases in IL-1β and the low frequency to high frequency ratio measured in HRV, were observed with increasing concentrations of PM2.5 EC. Conclusions Small, acute changes in cardiovascular and inflammation-related effects of microenvironmental exposures to traffic-related air pollution were observed in a group of healthy young adults. The associations were most profound with the diesel-source EC

    Particulate Matter (PM) Research Centers (1999–2005) and the Role of Interdisciplinary Center-Based Research

    Get PDF
    Objective: The U.S. Environmental Protection Agency funded five academic centers in 1999 to address the uncertainties in exposure, toxicity, and health effects of airborne particulate matter (PM) identified in the “Research Priorities for Airborne Particulate Matter” of the National Research Council (NRC). The centers were structured to promote interdisciplinary approaches to address research priorities of the NRC. In this report, we present selected accomplishments from the first 6 years of the PM Centers, with a focus on the advantages afforded by the interdisciplinary, center-based research approach. The review highlights advances in the area of ultrafine particles and traffic-related health effects as well as cardiovascular and respiratory effects, mechanisms, susceptibility, and PM exposure and characterization issues. Data sources and synthesis: The collective publications of the centers served as the data source. To provide a concise synthesis of overall findings, authors representing each of the five centers identified a limited number of topic areas that serve to illustrate the key accomplishments of the PM Centers program, and a consensus statement was developed. Conclusions: The PM Centers program has effectively applied interdisciplinary research approaches to advance PM science

    The validation analysis of the INSHORE system: a precise and efficient coastal survey system

    Get PDF
    Government and environmental entities are becoming increasingly concerned with qualifying and quantifying the erosion effects that are observed in sandy shores. Correspondingly, survey methodologies that gather data for such erosion studies are increasingly being demanded. The responsible entities are continually broadening their areas of interest, are concerned in the establishment of regular monitoring programmes and are demanding high accuracy from the geo-spatial data that is collected. The budget available for such monitoring activities, however, does not parallel the trend in the increasing demand for quality specifications. Survey methodologies need improvement to meet these requirements. We have developed a new land-based survey system-the INSHORE system-that is ideal for low cost, highly efficient and highly precise coastal surveys. The INSHORE system uses hi-tech hardware that is based on high-grade global positioning system (GPS) receivers and a laser distance sensor combined with advanced software algorithms. This system enables the determination of the ground coordinates of the surveyed areas with a precision of 1 to 2 cm, without having a sensor in contact with the ground surface. The absence of physical contact with the ground makes this system suitable for high-efficiency surveys. The accuracy of the positioning, which is based on advanced differential GPS processing, is enhanced by considering the estimated attitude of the GPS receiver holding structure and eliminates undesirable offsets. This paper describes the INSHORE survey system and presents the results of validation tests that were performed in a sandy shore environment
    corecore