790 research outputs found

    Ion Drift Meter for Dynamics Explorer

    Get PDF
    The ion drift meter for Dynamics Explorer B is discussed. It measures two mutually perpendicular angles of arrival of thermal ions with respect to the sensor look directions. These angles lie in the vertical and horizontal planes and may be thought of as pitch and yaw in the conventional aerodynamic sense. The components of the ion drift velocity along vertical and horizontal axes through the spacecraft body are derived to first order from knowledge of the spacecraft velocity vector and more accurately with additional knowledge of the component of ion drift along the sensor look direction

    Calibration of liquid argon and neon detectors with 83Krm^{83}Kr^m

    Full text link
    We report results from tests of 83^{83}Krm^{\mathrm{m}}, as a calibration source in liquid argon and liquid neon. 83^{83}Krm^{\mathrm{m}} atoms are produced in the decay of 83^{83}Rb, and a clear 83^{83}Krm^{\mathrm{m}} scintillation peak at 41.5 keV appears in both liquids when filling our detector through a piece of zeolite coated with 83^{83}Rb. Based on this scintillation peak, we observe 6.0 photoelectrons/keV in liquid argon with a resolution of 6% (σ\sigma/E) and 3.0 photoelectrons/keV in liquid neon with a resolution of 19% (σ\sigma/E). The observed peak intensity subsequently decays with the 83^{83}Krm^{\mathrm{m}} half-life after stopping the fill, and we find evidence that the spatial location of 83^{83}Krm^{\mathrm{m}} atoms in the chamber can be resolved. 83^{83}Krm^{\mathrm{m}} will be a useful calibration source for liquid argon and neon dark matter and solar neutrino detectors.Comment: 7 pages, 12 figure

    Demonstration of photomultiplier tube operation at 29 K

    Get PDF
    We describe measurements of gain, dark current, and quantum efficiency obtained while cooling a Hamamatsu R5912-02-MOD photomultiplier tube from room temperature to 29 K. We found that the PMT operated normally down to 29 K, with a reduced gain and quantum efficiency at the lowest temperatures. Furthermore, we found that the dark count rate increased as the temperature decreased. We conclude that these PMTs appear to be adequate for the requirements of the CLEAN experiment.Comment: 3 pages, 5 figure

    Hybrid simulations of lateral diffusion in fluctuating membranes

    Full text link
    In this paper we introduce a novel method to simulate lateral diffusion of inclusions in a fluctuating membrane. The regarded systems are governed by two dynamic processes: the height fluctuations of the membrane and the diffusion of the inclusion along the membrane. While membrane fluctuations can be expressed in terms of a dynamic equation which follows from the Helfrich Hamiltonian, the dynamics of the diffusing particle is described by a Langevin or Smoluchowski equation. In the latter equations, the curvature of the surface needs to be accounted for, which makes particle diffusion a function of membrane fluctuations. In our scheme these coupled dynamic equations, the membrane equation and the Langevin equation for the particle, are numerically integrated to simulate diffusion in a membrane. The simulations are used to study the ratio of the diffusion coefficient projected on a flat plane and the intramembrane diffusion coefficient for the case of free diffusion. We compare our results with recent analytical results that employ a preaveraging approximation and analyze the validity of this approximation. A detailed simulation study of the relevant correlation functions reveals a surprisingly large range where the approximation is applicable.Comment: 12 pages, 9 figures, accepted for publication in Phys. Rev.

    System for the measurement of oscillator instability

    Get PDF
    System for measuring phase and frequency fluctuations of high precision oscillator

    Direct WIMP identification: Physics performance of a segmented noble-liquid target immersed in a Gd-doped water veto

    Full text link
    We evaluate background rejection capabilities and physics performance of a detector composed of two diverse elements: a sensitive target (filled with one or two species of liquefied noble gasses) and an active veto (made of Gd-doped ultra-pure water). A GEANT4 simulation shows that for a direct WIMP search, this device can reduce the neutron background to O(1) event per year per tonne of material. Our calculation shows that an exposure of one tonne ×\times year will suffice to exclude spin-independent WIMP-nucleon cross sections ranging from 10910^{-9} pb to 101010^{-10} pb.Comment: 17 pages, 5 figures. Version accepted for publication in JCA

    Study of nuclear recoils in liquid argon with monoenergetic neutrons

    Full text link
    For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {\alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.Comment: 9 pages, 8 figures, proceedings of TAUP 2011, to be published in Journal of Physics: Conference Series (JCPS

    First measurement of discrimination between helium and electron recoils in liquid xenon for low-mass dark matter searches

    Full text link
    We report the first measurement of discrimination between low-energy helium recoils and electron recoils in liquid xenon. This result is relevant to proposed low-mass dark matter searches which seek to dissolve light target nuclei in the active volume of liquid-xenon time projection chambers. Low-energy helium recoils were produced by degrading α\alpha particles from 210^{210}Po with a gold foil situated on the cathode of a liquid xenon time-projection chamber. The resulting population of helium recoil events is well separated from electron recoils and is also offset from the expected position of xenon nuclear recoil events.Comment: 4 pages, 3 figure

    Observation of the Dependence of Scintillation from Nuclear Recoils in Liquid Argon on Drift Field

    Full text link
    We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam, produced at the Notre Dame Institute for Structure and Nuclear Astrophysics to study the scintillation light yield of recoiling nuclei in a LAr-TPC. A liquid scintillation counter was arranged to detect and identify neutrons scattered in the LAr-TPC target and to select the energy of the recoiling nuclei. We report the observation of a significant dependence on drift field of liquid argon scintillation from nuclear recoils of 11 keV. This observation is important because, to date, estimates of the sensitivity of noble liquid TPC dark matter searches are based on the assumption that electric field has only a small effect on the light yield from nuclear recoils.Comment: v3 updated to reflect published version, including a set of plots for 49.9 keV dat
    corecore