161 research outputs found

    Die britische Strategie: Eine kritische Zwischenbilanz

    Full text link

    Budgetkonzepte in der Kritik

    Full text link

    ret2spec: Speculative Execution Using Return Stack Buffers

    Full text link
    Speculative execution is an optimization technique that has been part of CPUs for over a decade. It predicts the outcome and target of branch instructions to avoid stalling the execution pipeline. However, until recently, the security implications of speculative code execution have not been studied. In this paper, we investigate a special type of branch predictor that is responsible for predicting return addresses. To the best of our knowledge, we are the first to study return address predictors and their consequences for the security of modern software. In our work, we show how return stack buffers (RSBs), the core unit of return address predictors, can be used to trigger misspeculations. Based on this knowledge, we propose two new attack variants using RSBs that give attackers similar capabilities as the documented Spectre attacks. We show how local attackers can gain arbitrary speculative code execution across processes, e.g., to leak passwords another user enters on a shared system. Our evaluation showed that the recent Spectre countermeasures deployed in operating systems can also cover such RSB-based cross-process attacks. Yet we then demonstrate that attackers can trigger misspeculation in JIT environments in order to leak arbitrary memory content of browser processes. Reading outside the sandboxed memory region with JIT-compiled code is still possible with 80\% accuracy on average.Comment: Updating to the cam-ready version and adding reference to the original pape

    Undermining User Privacy on Mobile Devices Using AI

    Full text link
    Over the past years, literature has shown that attacks exploiting the microarchitecture of modern processors pose a serious threat to the privacy of mobile phone users. This is because applications leave distinct footprints in the processor, which can be used by malware to infer user activities. In this work, we show that these inference attacks are considerably more practical when combined with advanced AI techniques. In particular, we focus on profiling the activity in the last-level cache (LLC) of ARM processors. We employ a simple Prime+Probe based monitoring technique to obtain cache traces, which we classify with Deep Learning methods including Convolutional Neural Networks. We demonstrate our approach on an off-the-shelf Android phone by launching a successful attack from an unprivileged, zeropermission App in well under a minute. The App thereby detects running applications with an accuracy of 98% and reveals opened websites and streaming videos by monitoring the LLC for at most 6 seconds. This is possible, since Deep Learning compensates measurement disturbances stemming from the inherently noisy LLC monitoring and unfavorable cache characteristics such as random line replacement policies. In summary, our results show that thanks to advanced AI techniques, inference attacks are becoming alarmingly easy to implement and execute in practice. This once more calls for countermeasures that confine microarchitectural leakage and protect mobile phone applications, especially those valuing the privacy of their users
    corecore