161 research outputs found
ret2spec: Speculative Execution Using Return Stack Buffers
Speculative execution is an optimization technique that has been part of CPUs
for over a decade. It predicts the outcome and target of branch instructions to
avoid stalling the execution pipeline. However, until recently, the security
implications of speculative code execution have not been studied.
In this paper, we investigate a special type of branch predictor that is
responsible for predicting return addresses. To the best of our knowledge, we
are the first to study return address predictors and their consequences for the
security of modern software. In our work, we show how return stack buffers
(RSBs), the core unit of return address predictors, can be used to trigger
misspeculations. Based on this knowledge, we propose two new attack variants
using RSBs that give attackers similar capabilities as the documented Spectre
attacks. We show how local attackers can gain arbitrary speculative code
execution across processes, e.g., to leak passwords another user enters on a
shared system. Our evaluation showed that the recent Spectre countermeasures
deployed in operating systems can also cover such RSB-based cross-process
attacks. Yet we then demonstrate that attackers can trigger misspeculation in
JIT environments in order to leak arbitrary memory content of browser
processes. Reading outside the sandboxed memory region with JIT-compiled code
is still possible with 80\% accuracy on average.Comment: Updating to the cam-ready version and adding reference to the
original pape
Undermining User Privacy on Mobile Devices Using AI
Over the past years, literature has shown that attacks exploiting the
microarchitecture of modern processors pose a serious threat to the privacy of
mobile phone users. This is because applications leave distinct footprints in
the processor, which can be used by malware to infer user activities. In this
work, we show that these inference attacks are considerably more practical when
combined with advanced AI techniques. In particular, we focus on profiling the
activity in the last-level cache (LLC) of ARM processors. We employ a simple
Prime+Probe based monitoring technique to obtain cache traces, which we
classify with Deep Learning methods including Convolutional Neural Networks. We
demonstrate our approach on an off-the-shelf Android phone by launching a
successful attack from an unprivileged, zeropermission App in well under a
minute. The App thereby detects running applications with an accuracy of 98%
and reveals opened websites and streaming videos by monitoring the LLC for at
most 6 seconds. This is possible, since Deep Learning compensates measurement
disturbances stemming from the inherently noisy LLC monitoring and unfavorable
cache characteristics such as random line replacement policies. In summary, our
results show that thanks to advanced AI techniques, inference attacks are
becoming alarmingly easy to implement and execute in practice. This once more
calls for countermeasures that confine microarchitectural leakage and protect
mobile phone applications, especially those valuing the privacy of their users
- …
