11 research outputs found

    High-throughput data analysis in behavior genetics

    Full text link
    In recent years, a growing need has arisen in different fields for the development of computational systems for automated analysis of large amounts of data (high-throughput). Dealing with nonstandard noise structure and outliers, that could have been detected and corrected in manual analysis, must now be built into the system with the aid of robust methods. We discuss such problems and present insights and solutions in the context of behavior genetics, where data consists of a time series of locations of a mouse in a circular arena. In order to estimate the location, velocity and acceleration of the mouse, and identify stops, we use a nonstandard mix of robust and resistant methods: LOWESS and repeated running median. In addition, we argue that protection against small deviations from experimental protocols can be handled automatically using statistical methods. In our case, it is of biological interest to measure a rodent's distance from the arena's wall, but this measure is corrupted if the arena is not a perfect circle, as required in the protocol. The problem is addressed by estimating robustly the actual boundary of the arena and its center using a nonparametric regression quantile of the behavioral data, with the aid of a fast algorithm developed for that purpose.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS304 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants

    Get PDF
    Human language, as well as birdsong, relies on the ability to arrange vocal elements in novel sequences. However, little is known about the ontogenetic origin of this capacity. We tracked the development of vocal combinatorial capacity in three species of vocal learners, combining an experimental approach in zebra finches with an analysis of natural development of vocal transitions in Bengalese finches and pre-lingual human infants and found a common, stepwise pattern of acquiring vocal transitions across species. In our first study, juvenile zebra finches were trained to perform one song and then the training target was altered, prompting the birds to swap syllable order, or insert a new syllable into a string. All birds solved these permutation tasks in a series of steps, gradually approximating the target sequence by acquiring novel pair-wise syllable transitions, sometimes too slowly to fully accomplish the task. Similarly, in the more complex songs of Bengalese finches, branching points and bidirectional transitions in song-syntax were acquired in a stepwise manner, starting from a more restrictive set of vocal transitions. The babbling of pre-lingual human infants revealed a similar developmental pattern: instead of a single developmental shift from reduplicated to variegated babbling (i.e., from repetitive to diverse sequences), we observed multiple shifts, where each novel syllable type slowly acquired a diversity of pair-wise transitions, asynchronously over development. Collectively, these results point to a common generative process that is conserved across species, suggesting that the long-noted gap between perceptual versus motor combinatorial capabilities in human infants1 may arise from the challenges in constructing new pair-wise transitions

    Songbirds work around computational complexity by learning song vocabulary independently of sequence

    Get PDF
    While acquiring motor skills, animals transform their plastic motor sequences to match desired targets. However, because both the structure and temporal position of individual gestures are adjustable, the number of possible motor transformations increases exponentially with sequence length. Identifying the optimal transformation towards a given target is therefore a computationally intractable problem. Here we show an evolutionary workaround for reducing the computational complexity of song learning in zebra finches. We prompt juveniles to modify syllable phonology and sequence in a learned song to match a newly introduced target song. Surprisingly, juveniles match each syllable to the most spectrally similar sound in the target, regardless of its temporal position, resulting in unnecessary sequence errors, that they later try to correct. Thus, zebra finches prioritize efficient learning of syllable vocabulary, at the cost of inefficient syntax learning. This strategy provides a non-optimal but computationally manageable solution to the task of vocal sequence learning

    Learning the sound inventory of a complex vocal skill via an intrinsic reward

    No full text
    Reinforcement learning (RL) is thought to underlie the acquisition of vocal skills like birdsong and speech, where sounding like one's "tutor" is rewarding. However, what RL strategy generates the rich sound inventories for song or speech? We find that the standard actor-critic model of birdsong learning fails to explain juvenile zebra finches' efficient learning of multiple syllables. However, when we replace a single actor with multiple independent actors that jointly maximize a common intrinsic reward, then birds' empirical learning trajectories are accurately reproduced. The influence of each actor (syllable) on the magnitude of global reward is competitively determined by its acoustic similarity to target syllables. This leads to each actor matching the target it is closest to and, occasionally, to the competitive exclusion of an actor from the learning process (i.e., the learned song). We propose that a competitive-cooperative multi-actor RL (MARL) algorithm is key for the efficient learning of the action inventory of a complex skill.ISSN:2375-254

    Learning the action inventory of a complex skill via an intrinsic reward

    No full text
    Reward-prediction errors as reflected by dopaminergic neuron responses are thought to underlie the acquisition of multi-action skills such as birdsong or speech, where sounding similar to one’s learning target is intrinsically rewarding. It is not known how the predicted reward itself is computed. Based on past behavioral studies showing context-independence and greediness of birdsong syllable inventory learning, we hypothesize a similarity-based intrinsic reward formed by a hierarchical competition between partial rewards attributed to individual syllables and calls. Assuming that developmental birdsong learning is driven by minimization of reward prediction error, we infer a zero partial reward for vocalizations that are at a large acoustic distance from a target. We train young zebra finches to learn a syllable inventory and find that this reinforcement learning model correctly predicts the exclusion of a syllable from a song and its replacement by a call. We present implications for dopaminergic responses in the avian song system during learning

    Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants

    Get PDF
    Human language, as well as birdsong, relies on the ability to arrange vocal elements in new sequences. However, little is known about the ontogenetic origin of this capacity. Here we track the development of vocal combinatorial capacity in three species of vocal learners, combining an experimental approach in zebra finches (Taeniopygia guttata) with an analysis of natural development of vocal transitions in Bengalese finches (Lonchura striata domestica) and pre-lingual human infants. We find a common, stepwise pattern of acquiring vocal transitions across species. In our first study, juvenile zebra finches were trained to perform one song and then the training target was altered, prompting the birds to swap syllable order, or insert a new syllable into a string. All birds solved these permutation tasks in a series of steps, gradually approximating the target sequence by acquiring new pairwise syllable transitions, sometimes too slowly to accomplish the task fully. Similarly, in the more complex songs of Bengalese finches, branching points and bidirectional transitions in song syntax were acquired in a stepwise fashion, starting from a more restrictive set of vocal transitions. The babbling of pre-lingual human infants showed a similar pattern: instead of a single developmental shift from reduplicated to variegated babbling (that is, from repetitive to diverse sequences), we observed multiple shifts, where each new syllable type slowly acquired a diversity of pairwise transitions, asynchronously over development. Collectively, these results point to a common generative process that is conserved across species, suggesting that the long-noted gap between perceptual versus motor combinatorial capabilities in human infants1 may arise partly from the challenges in constructing new pairwise vocal transitions
    corecore