3 research outputs found

    Discovery and Optimization of Quinazolinone-pyrrolopyrrolones as Potent and Orally Bioavailable Pan-Pim Kinase Inhibitors

    No full text
    The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable. However, cell active pan-Pim inhibitors have proven difficult to develop because Pim-2 has a low <i>K</i><sub>m</sub> for ATP and therefore requires a very potent inhibitor to effectively block the kinase activity at cellular ATP concentrations. Herein, we report a series of quinazolinone-pyrrolopyrrolones as potent and selective pan-Pim inhibitors. In particular, compound <b>17</b> is orally efficacious in a mouse xenograft model (KMS-12 BM) of multiple myeloma, with 93% tumor growth inhibition at 50 mg/kg QD upon oral dosing

    Selective Class I Phosphoinositide 3‑Kinase Inhibitors: Optimization of a Series of Pyridyltriazines Leading to the Identification of a Clinical Candidate, AMG 511

    No full text
    The phosphoinositide 3-kinase family catalyzes the phosphorylation of phosphatidylinositol-4,5-diphosphate to phosphatidylinositol-3,4,5-triphosphate, a secondary messenger which plays a critical role in important cellular functions such as metabolism, cell growth, and cell survival. Our efforts to identify potent, efficacious, and orally available phosphatidylinositol 3-kinase (PI3K) inhibitors as potential cancer therapeutics have resulted in the discovery of 4-(2-((6-methoxypyridin-3-yl)­amino)-5-((4-(methylsulfonyl)­piperazin-1-yl)­methyl)­pyridin-3-yl)-6-methyl-1,3,5-triazin-2-amine (<b>1</b>). In this paper, we describe the optimization of compound <b>1</b>, which led to the design and synthesis of pyridyltriazine <b>31</b>, a potent pan inhibitor of class I PI3Ks with a superior pharmacokinetic profile. Compound <b>31</b> was shown to potently block the targeted PI3K pathway in a mouse liver pharmacodynamic model and inhibit tumor growth in a U87 malignant glioma glioblastoma xenograft model. On the basis of its excellent in vivo efficacy and pharmacokinetic profile, compound <b>31</b> was selected for further evaluation as a clinical candidate and was designated AMG 511

    Discovery and in Vivo Evaluation of (<i>S</i>)‑<i>N</i>‑(1-(7-Fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)‑9<i>H</i>‑purin-6-amine (AMG319) and Related PI3Kδ Inhibitors for Inflammation and Autoimmune Disease

    No full text
    The development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of <b>1</b> (AMG319), a compound with an IC<sub>50</sub> of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation
    corecore