75 research outputs found

    Early cretaceous ridge subduction in the Shandong Peninsula, Eastern China, indicated by Laoshan A-type granite

    Get PDF
    Early Cretaceous A-type granites are widespread in the Shandong Peninsula, which can be used to elucidate the tectonic evolution of the eastern China and the destruction of the North China Craton. However, their genesis is still controversial. Several competing models, ranging from slab break-off, postorogenic extension, foundering of the lower crust and ridge subduction, were proposed. Here, we report zircon U–Pb ages, whole-rock and apatite geochemical compositions of the Laoshan granite and discuss its tectonic implications. The Laoshan granite has typical characteristics of A-type granite with high FeOT/(FeOT + MgO) ratios (0.90–0.97) and 10000*Ga/Al ratios (2.70–3.36) and high total alkali (Na2O + K2O: 7.95–8.70 wt%) contents and Zr+Nb+Ce+Y (most >350 ppm) concentrations. The Laoshan granite is further classified as A1-type based on the Yb/Ta-Y/Nb and Ce/Nb-Y/Nb diagrams and the Nb-Y-3Ga and Nb-Y-Ce triangular discriminant diagrams. Zircon U–Pb dating of two Laoshan granite samples yielded emplacement ages of 117.8 ± 1.0 Ma and 120.1 ± 1.3 Ma, respectively. The oxygen fugacity of the Laoshan granite magma is low, as indicated by zircon Ce4+/Ce3+ ratios (most <300). The crystallization temperature of zircon varies significantly, ranging from 652 to 830°C. The apatite compositions show that the Laoshan granite has high F (2.09–2.72 wt%) and low Cl (0.01–0.09 wt%) contents, consistent with influence by fluid released from the decomposition of phengite. Apatite rare earth elements show that mantle sources are also involved in Laoshan A-type granite. Combined previous studies of A-type granitic plutons in the Shandong Province and the Lower Yangtze River belt with the drifting history of the Pacific plate, we propose that the flat subduction of the spreading ridge between the Pacific and the Izanagi plates was responsible for the formation of Laoshan A-type granite

    ConvKyber: Unleashing the Power of AI Accelerators for Faster Kyber with Novel Iteration-based Approaches

    Get PDF
    The remarkable performance capabilities of AI accelerators offer promising opportunities for accelerating cryptographic algorithms, particularly in the context of lattice-based cryptography. However, current approaches to leveraging AI accelerators often remain at a rudimentary level of implementation, overlooking the intricate internal mechanisms of these devices. Consequently, a significant number of computational resources is underutilized. In this paper, we present a comprehensive exploration of NVIDIA Tensor Cores and introduce a novel framework tailored specifically for Kyber. Firstly, we propose two innovative approaches that efficiently break down Kyber\u27s NTT into iterative matrix multiplications, resulting in approximately a 75% reduction in costs compared to the state-of-the-art scanning-based methods.Secondly, by reversing the internal mechanisms, we precisely manipulate the internal resources of Tensor Cores using assembly-level code instead of inefficient standard interfaces, eliminating memory accesses and redundant function calls. Finally, building upon our highly optimized NTT, we provide a complete implementation for all parameter sets of Kyber. Our implementation surpasses the state-of-the-art Tensor Core based work, achieving remarkable speed-ups of 1.93x, 1.65x, 1.22x and 3.55x for polyvec_ntt, KeyGen, Enc and Dec in Kyber-1024, respectively. Even when considering execution latency, our throughput-oriented full Kyber implementation maintains an acceptable execution latency. For instance, the execution latency ranges from 1.02 to 5.68 milliseconds for Kyber-1024 on R3080 when achieving the peak throughput

    Overexpression of the Glutathione Peroxidase 5 (RcGPX5) Gene From Rhodiola crenulata Increases Drought Tolerance in Salvia miltiorrhiza

    Get PDF
    Excessive cellular accumulation of reactive oxygen species (ROS) due to environmental stresses can critically disrupt plant development and negatively affect productivity. Plant glutathione peroxidases (GPXs) play an important role in ROS scavenging by catalyzing the reduction of H2O2 and other organic hydroperoxides to protect plant cells from oxidative stress damage. RcGPX5, a member of the GPX gene family, was isolated from a traditional medicinal plant Rhodiola crenulata and constitutively expressed in Salvia miltiorrhiza under control of the CaMV 35S promoter. Transgenic plants showed increased tolerance to oxidative stress caused by application of H2O2 and drought, and had reduced production of malondialdehyde (MDA) compared with the wild type. Under drought stress, seedlings of the transgenic lines wilted later than the wild type and recovered growth 1 day after re-watering. In addition, the reduced glutathione (GSH) and total glutathione (T-GSH) contents were higher in the transgenic lines, with increased enzyme activities including glutathione reductase (GR), ascorbate peroxidase (APX), and GPX. These changes prevent H2O2 and O2- accumulation in cells of the transgenic lines compared with wild type. Overexpression of RcGPX5 alters the relative expression levels of multiple endogenous genes in S. miltiorrhiza, including transcription factor genes and genes in the ROS and ABA pathways. In particular, RcGPX5 expression increases the mass of S. miltiorrhiza roots while reducing the concentration of the active ingredients. These results show that heterologous expression of RcGPX5 in S. miltiorrhiza can affect the regulation of multiple biochemical pathways to confer tolerance to drought stress, and RcGPX5 might act as a competitor with secondary metabolites in the S. miltiorrhiza response to environmental stimuli

    ConvKyber: Unleashing the Power of AI Accelerators for Faster Kyber with Novel Iteration-based Approaches

    Get PDF
    The remarkable performance capabilities of AI accelerators offer promising opportunities for accelerating cryptographic algorithms, particularly in the context of lattice-based cryptography. However, current approaches to leveraging AI accelerators often remain at a rudimentary level of implementation, overlooking the intricate internal mechanisms of these devices. Consequently, a significant number of computational resources is underutilized. In this paper, we present a comprehensive exploration of NVIDIA Tensor Cores and introduce a novel framework tailored specifically for Kyber. Firstly, we propose two innovative approaches that efficiently break down Kyber’s NTT into iterative matrix multiplications, resulting in approximately a 75% reduction in costs compared to the state-of-the-art scanning-based methods. Secondly, by reversing the internal mechanisms, we precisely manipulate the internal resources of Tensor Cores using assembly-level code instead of inefficient standard interfaces, eliminating memory accesses and redundant function calls. Finally, building upon our highly optimized NTT, we provide a complete implementation for all parameter sets of Kyber. Our implementation surpasses the state-of-the-art Tensor Core based work, achieving remarkable speed-ups of 1.93x, 1.65x, 1.22x and 3.55x for polyvec_ntt, KeyGen, Enc and Dec in Kyber-1024, respectively. Even when considering execution latency, our throughput-oriented full Kyber implementation maintains an acceptable execution latency. For instance, the execution latency ranges from 1.02 to 5.68 milliseconds for Kyber-1024 on R3080 when achieving the peak throughput

    Modelling and Control of Trojan Propagation via Online Game Accelerators

    No full text
    The widespread use of online game accelerators also induces them to become a medium for hackers to spread Trojan horses. In this paper, we propose a novel compartment model which considered the heterogeneity of online computer game players aiming to characterize the Trojan propagation. Specifically, we distinguish rational game players from impulsive game players in our model. The spreading threshold is obtained, and the global stability of equilibrium is also verified. Moreover, Trojan’s control problem is studied by using Pontryagin’s maximum principle. Numerical results confirm the stability of the system and the effectiveness of the optimal control strategy. Besides, more numerical results also show that some control strategies such as warning and caution should be taken at the very beginning of game player downloading the malicious accelerator

    Modeling and Analyzing the Spread of Flash Disk Worms via Multiple Subnets

    No full text
    The Flash Disk worms, spreading via both Web-based scanning and removable devices between multiple subnets, have become a serious threat to the Internet, especially those physically isolated subnets. We present a model which incorporates specific features of these worms in this paper. Then, we analyze the dynamic behaviors of the model when one subnet is considered. Analytical result shows that the Flash Disk worm can self-perpetuate when Ri0>1 and will die out otherwise. When multiple subnets are considered, we get that once a computer is infected by the Flash Disk worms, other computers in that subnet will be infected in a short time. Thus, for any subnet, to contain the Flash Disk worms, the most effective way is to prevent the first infected individual by improving the users’ security awareness of using removed devices. Our results are illustrated by numerical simulation
    • …
    corecore